BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21910434)

  • 1. Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications.
    Tang Z; Wu H; Zhang Y; Li Z; Lin Y
    Anal Chem; 2011 Nov; 83(22):8611-6. PubMed ID: 21910434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-tuneable and micro-patterned iron nanoparticles derived from biomolecules via microcontact printing SAM-modified substrates and controlled-potential electrolyses.
    Tominaga M; Miyahara K; Soejima K; Nomura S; Matsumoto M; Taniguchi I
    J Colloid Interface Sci; 2007 Sep; 313(1):135-40. PubMed ID: 17532000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and interfacing of biocompatible iron oxide nanoparticles through the ferroxidase activity of Helicobacter Pylori ferritin.
    Lee IL; Li PS; Yu WL; Shen HH
    Biofabrication; 2012 Dec; 4(4):045001. PubMed ID: 23013844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles.
    Uchida M; Flenniken ML; Allen M; Willits DA; Crowley BE; Brumfield S; Willis AF; Jackiw L; Jutila M; Young MJ; Douglas T
    J Am Chem Soc; 2006 Dec; 128(51):16626-33. PubMed ID: 17177411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferritin nanocages: a novel platform for biomedical applications.
    Bhushan B; Kumar SU; Matai I; Sachdev A; Dubey P; Gopinath P
    J Biomed Nanotechnol; 2014 Oct; 10(10):2950-76. PubMed ID: 25992425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembly of Ferritin Nanoparticles into an Enzyme Nanocomposite with Tunable Size for Ultrasensitive Immunoassay.
    Men D; Zhang TT; Hou LW; Zhou J; Zhang ZP; Shi YY; Zhang JL; Cui ZQ; Deng JY; Wang DB; Zhang XE
    ACS Nano; 2015 Nov; 9(11):10852-60. PubMed ID: 26431499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional nanoparticle arrays derived from ferritin monolayers.
    Yuan Z; Petsev DN; Prevo BG; Velev OD; Atanassov P
    Langmuir; 2007 May; 23(10):5498-504. PubMed ID: 17402754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite.
    Xu Q; Mao C; Liu NN; Zhu JJ; Sheng J
    Biosens Bioelectron; 2006 Dec; 22(5):768-73. PubMed ID: 16600589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated magnetic bionanocomposites through nanoparticle-mediated assembly of ferritin.
    Srivastava S; Samanta B; Jordan BJ; Hong R; Xiao Q; Tuominen MT; Rotello VM
    J Am Chem Soc; 2007 Sep; 129(38):11776-80. PubMed ID: 17803305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver ion incorporation and nanoparticle formation inside the cavity of Pyrococcus furiosus ferritin: structural and size-distribution analyses.
    Kasyutich O; Ilari A; Fiorillo A; Tatchev D; Hoell A; Ceci P
    J Am Chem Soc; 2010 Mar; 132(10):3621-7. PubMed ID: 20170158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-based ferritin nanocore as a contrast agent.
    Sana B; Johnson E; Sheah K; Poh CL; Lim S
    Biointerphases; 2010 Sep; 5(3):FA48-52. PubMed ID: 21171713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Catalytic and immunochemical properties of ferritin conjugates with horseradish peroxidase].
    Denisov VN; Metelitsa DI
    Biokhimiia; 1987 Aug; 52(8):1248-57. PubMed ID: 3311174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of radio frequency magnetic fields on iron release from cage proteins.
    Céspedes O; Ueno S
    Bioelectromagnetics; 2009 Jul; 30(5):336-42. PubMed ID: 19274682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid nanotubes comprising alpha-Fe2O3 nanoparticles prepared from ferritin protein.
    Qu X; Kobayashi N; Komatsu T
    ACS Nano; 2010 Mar; 4(3):1732-8. PubMed ID: 20166700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles.
    Fan J; Yin JJ; Ning B; Wu X; Hu Y; Ferrari M; Anderson GJ; Wei J; Zhao Y; Nie G
    Biomaterials; 2011 Feb; 32(6):1611-8. PubMed ID: 21112084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radio frequency magnetic field effects on molecular dynamics and iron uptake in cage proteins.
    Céspedes O; Inomoto O; Kai S; Nibu Y; Yamaguchi T; Sakamoto N; Akune T; Inoue M; Kiss T; Ueno S
    Bioelectromagnetics; 2010 May; 31(4):311-7. PubMed ID: 20082334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Native and synthetic ferritins for nanobiomedical applications: recent advances and new perspectives.
    Domínguez-Vera JM; Fernández B; Gálvez N
    Future Med Chem; 2010 Apr; 2(4):609-18. PubMed ID: 21426011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prussian blue modified ferritin as peroxidase mimetics and its applications in biological detection.
    Zhang W; Zhang Y; Chen Y; Li S; Gu N; Hu S; Sun Y; Chen X; Li Q
    J Nanosci Nanotechnol; 2013 Jan; 13(1):60-7. PubMed ID: 23646698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the apoprotein in the catalytic peroxidase-like function of ferritin.
    Arapova GS; Eryomin AN; Metelitza DI
    Biochemistry (Mosc); 1997 Dec; 62(12):1415-23. PubMed ID: 9481874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing.
    Wu Y; Chen C; Liu S
    Anal Chem; 2009 Feb; 81(4):1600-7. PubMed ID: 19140671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.