These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 21910851)
1. Bacteriophage recombineering in the lytic state using the lambda red recombinases. Fehér T; Karcagi I; Blattner FR; Pósfai G Microb Biotechnol; 2012 Jul; 5(4):466-76. PubMed ID: 21910851 [TBL] [Abstract][Full Text] [Related]
2. Construction and functional characterization of an integrative form lambda Red recombineering Escherichia coli strain. Song J; Dong H; Ma C; Zhao B; Shang G FEMS Microbiol Lett; 2010 Aug; 309(2):178-83. PubMed ID: 20618864 [TBL] [Abstract][Full Text] [Related]
3. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. Marinelli LJ; Piuri M; Swigonová Z; Balachandran A; Oldfield LM; van Kessel JC; Hatfull GF PLoS One; 2008; 3(12):e3957. PubMed ID: 19088849 [TBL] [Abstract][Full Text] [Related]
5. A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Sun Z; Deng A; Hu T; Wu J; Sun Q; Bai H; Zhang G; Wen T Appl Microbiol Biotechnol; 2015 Jun; 99(12):5151-62. PubMed ID: 25750031 [TBL] [Abstract][Full Text] [Related]
8. [Development of a new recombineering system by gap repair]. Li SH; Hong X; Yu M; Chen W; Huang CF; Zhou JG Yi Chuan Xue Bao; 2005 May; 32(5):533-7. PubMed ID: 16018266 [TBL] [Abstract][Full Text] [Related]
10. Bacteriophage recombination systems and biotechnical applications. Nafissi N; Slavcev R Appl Microbiol Biotechnol; 2014 Apr; 98(7):2841-51. PubMed ID: 24442504 [TBL] [Abstract][Full Text] [Related]
11. Molecular cloning of bacterial DNA in vivo using a transposable R6K ori and a P1vir phage. Stojiljkovic I; Bozja J; Salaj-Smic E J Bacteriol; 1994 Feb; 176(4):1188-91. PubMed ID: 8106331 [TBL] [Abstract][Full Text] [Related]
12. Accessory genes in the darA operon of bacteriophage P1 affect antirestriction function, generalized transduction, head morphogenesis, and host cell lysis. Iida S; Hiestand-Nauer R; Sandmeier H; Lehnherr H; Arber W Virology; 1998 Nov; 251(1):49-58. PubMed ID: 9813202 [TBL] [Abstract][Full Text] [Related]
13. Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA. Marinelli LJ; Piuri M; Hatfull GF Methods Mol Biol; 2019; 1898():69-80. PubMed ID: 30570724 [TBL] [Abstract][Full Text] [Related]
14. Phage recombinases and their applications. Murphy KC Adv Virus Res; 2012; 83():367-414. PubMed ID: 22748814 [TBL] [Abstract][Full Text] [Related]
15. Recombineering: a powerful new tool for mouse functional genomics. Copeland NG; Jenkins NA; Court DL Nat Rev Genet; 2001 Oct; 2(10):769-79. PubMed ID: 11584293 [TBL] [Abstract][Full Text] [Related]
16. Cointegrates between bacteriophage P1 DNA and plasmid pBR322 derivatives suggest molecular mechanisms for P1-mediated transduction of small plasmids. Iida S; Meyer J; Arber W Mol Gen Genet; 1981; 184(1):1-10. PubMed ID: 6278242 [TBL] [Abstract][Full Text] [Related]
17. The Legacy of Nat Sternberg: The Genesis of Cre-lox Technology. Yarmolinsky M; Hoess R Annu Rev Virol; 2015 Nov; 2(1):25-40. PubMed ID: 26958905 [TBL] [Abstract][Full Text] [Related]
18. [Gene fusion of egfp & kan and recombinant plasmid construction by red mediated in vivo homologous recombination]. Wu Y; Li SH; Shi QG; Liu DS; Zhou JG Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):598-601. PubMed ID: 17822029 [TBL] [Abstract][Full Text] [Related]
19. Serine recombinases as tools for genome engineering. Brown WR; Lee NC; Xu Z; Smith MC Methods; 2011 Apr; 53(4):372-9. PubMed ID: 21195181 [TBL] [Abstract][Full Text] [Related]
20. [Recombineering and its application]. Zhou JG; Hong X; Huang CF Yi Chuan Xue Bao; 2003 Oct; 30(10):983-8. PubMed ID: 14669518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]