These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21911207)

  • 1. Crayfish brain-protocerebrum and retina show serotonergic functional relationship.
    Valdés-Fuentes M; Prieto-Sagredo J; Fanjul-Moles ML
    Brain Res; 2011 Oct; 1417():36-44. PubMed ID: 21911207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocerebral circadian pacemakers in crayfish: evidence for mutually coupled pacemakers.
    Barrera-Mera B; Block GD
    Brain Res; 1990 Jul; 522(2):241-5. PubMed ID: 2224526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melatonin modulates the ERG circadian rhythm in crayfish.
    Solís-Chagoyán H; Mendoza-Vargas L; Fuentes-Pardo B
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Apr; 149(4):373-9. PubMed ID: 18313959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Putative pacemakers of crayfish show clock proteins interlocked with circadian oscillations.
    Escamilla-Chimal EG; Velázquez-Amado RM; Fiordelisio T; Fanjul-Moles ML
    J Exp Biol; 2010 Nov; 213(Pt 21):3723-33. PubMed ID: 20952622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crayfish brain interneurons that converge with serotonin giant cells in accessory lobe glomeruli.
    Sandeman D; Beltz B; Sandeman R
    J Comp Neurol; 1995 Feb; 352(2):263-79. PubMed ID: 7721994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pigment dispersing hormone modulates spontaneous electrical activity of the cerebroid ganglion and synchronizes electroretinogram circadian rhythm in crayfish Procambarus clarkii.
    Solís-Chagoyán H; Alvarado R; Figueroa A; Mendoza-Vargas L; Fuentes-Pardo B
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Apr; 161(4):450-5. PubMed ID: 22252127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunolocalisation of crustacean-SIFamide in the median brain and eyestalk neuropils of the marbled crayfish.
    Polanska MA; Yasuda A; Harzsch S
    Cell Tissue Res; 2007 Nov; 330(2):331-44. PubMed ID: 17828557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of cerebroid ganglion lesions on ERG circadian rhythm of the crayfish.
    Barrera-Mera B
    Physiol Behav; 1976 Jul; 17(1):59-64. PubMed ID: 11516
    [No Abstract]   [Full Text] [Related]  

  • 9. Disynaptic and polysynaptic statocyst pathways to an identified set of premotor nonspiking interneurons in the crayfish brain.
    Fujisawa K; Takahata M
    J Comp Neurol; 2007 Aug; 503(4):560-72. PubMed ID: 17534936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of protocerebrum in the modulation of circadian rhythmicity in the crayfish visual system.
    Barrera-Mera B; Cibrian-Tovar J; García-Díaz DE
    Brain Res Bull; 1980; 5(6):667-72. PubMed ID: 7470937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian modulation of crustacean hyperglycemic hormone in crayfish eyestalk and retina.
    Fanjul-Moles ML; Escamilla-Chimal EG; Salceda R; Giulianini PG; Sánchez-Chávez G
    Chronobiol Int; 2010 Jan; 27(1):34-51. PubMed ID: 20205556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual efference neuromodulates retinal timing: in vivo roles of octopamine, substance P, circadian phase, and efferent activation in Limulus.
    Bolbecker AR; Lim-Kessler CC; Li J; Swan A; Lewis A; Fleets J; Wasserman GS
    J Neurophysiol; 2009 Aug; 102(2):1132-8. PubMed ID: 19535477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraretinal photoreceptors in the brain of the crayfish Cherax destructor.
    Sandeman DC; Sandeman RE; de Couet HG
    J Neurobiol; 1990 Jun; 21(4):619-29. PubMed ID: 1695916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian rhythm in melatonin release as a mechanism to reinforce the temporal organization of the circadian system in crayfish.
    Mendoza-Vargas L; Báez-Saldaña A; Alvarado R; Fuentes-Pardo B; Flores-Soto E; Solís-Chagoyán H
    Invert Neurosci; 2017 Jun; 17(2):6. PubMed ID: 28540583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping membrane potential transients in crayfish (Procambarus clarkii) optic lobe neuropils with voltage-sensitive dyes.
    Yagodin S; Collin C; Alkon DL; Sheppard NF; Sattelle DB
    J Neurophysiol; 1999 Jan; 81(1):334-44. PubMed ID: 9914293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian rhythm of human electroretinogram.
    Nozaki S; Wakakura M; Ishikawa S
    Jpn J Ophthalmol; 1983; 27(2):346-52. PubMed ID: 6620718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melatonin regulates circadian electroretinogram rhythms in a dose- and time-dependent fashion.
    Peters JL; Cassone VM
    J Pineal Res; 2005 Apr; 38(3):209-15. PubMed ID: 15725343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The circadian system of crayfish: a developmental approach.
    Fanjul-Moles ML; Prieto-Sagredo J
    Microsc Res Tech; 2003 Feb; 60(3):291-301. PubMed ID: 12539159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocerebral deafferentation effects on crayfish glycemic response: a protocerebral circadian pacemaker regulates the hemolymph sugar concentration.
    Puche J; Barrera-Calva E; Barrera-Mera B
    Rev Esp Fisiol; 1993 Sep; 49(3):151-5. PubMed ID: 8310164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological and physiological characterization of individual olfactory interneurons connecting the brain and eyestalk ganglia of the crayfish.
    Derby CD; Blaustein DN
    J Comp Physiol A; 1988 Oct; 163(6):777-94. PubMed ID: 3199344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.