BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 21911473)

  • 1. The Fbx4 tumor suppressor regulates cyclin D1 accumulation and prevents neoplastic transformation.
    Vaites LP; Lee EK; Lian Z; Barbash O; Roy D; Wasik M; Klein-Szanto AJ; Rustgi AK; Diehl JA
    Mol Cell Biol; 2011 Nov; 31(22):4513-23. PubMed ID: 21911473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex.
    Lin DI; Barbash O; Kumar KG; Weber JD; Harper JW; Klein-Szanto AJ; Rustgi A; Fuchs SY; Diehl JA
    Mol Cell; 2006 Nov; 24(3):355-66. PubMed ID: 17081987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer.
    Barbash O; Zamfirova P; Lin DI; Chen X; Yang K; Nakagawa H; Lu F; Rustgi AK; Diehl JA
    Cancer Cell; 2008 Jul; 14(1):68-78. PubMed ID: 18598945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCF(Fbx4/alphaB-crystallin) E3 ligase: when one is not enough.
    Barbash O; Diehl JA
    Cell Cycle; 2008 Oct; 7(19):2983-6. PubMed ID: 18818515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation-dependent regulation of SCF(Fbx4) dimerization and activity involves a novel component, 14-3-3ɛ.
    Barbash O; Lee EK; Diehl JA
    Oncogene; 2011 Apr; 30(17):1995-2002. PubMed ID: 21242966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FBX4 mediates rapid cyclin D1 proteolysis upon DNA damage in immortalized esophageal epithelial cells.
    Liu J; Yang H; Cheung PY; Tsao SW; Lv L; Cheung ALM
    Biochem Biophys Res Commun; 2021 May; 554():76-82. PubMed ID: 33784509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine 269 is essential for cyclin D1 ubiquitylation by the SCF(Fbx4/alphaB-crystallin) ligase and subsequent proteasome-dependent degradation.
    Barbash O; Egan E; Pontano LL; Kosak J; Diehl JA
    Oncogene; 2009 Dec; 28(49):4317-25. PubMed ID: 19767775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer.
    Chu X; Zhang T; Wang J; Li M; Zhang X; Tu J; Sun S; Chen X; Lu F
    Biochem Biophys Res Commun; 2014 Apr; 447(1):158-64. PubMed ID: 24704453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic reevaluation of the role of F-box proteins in cyclin D1 degradation.
    Kanie T; Onoyama I; Matsumoto A; Yamada M; Nakatsumi H; Tateishi Y; Yamamura S; Tsunematsu R; Matsumoto M; Nakayama KI
    Mol Cell Biol; 2012 Feb; 32(3):590-605. PubMed ID: 22124152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase.
    Aggarwal P; Vaites LP; Kim JK; Mellert H; Gurung B; Nakagawa H; Herlyn M; Hua X; Rustgi AK; McMahon SB; Diehl JA
    Cancer Cell; 2010 Oct; 18(4):329-40. PubMed ID: 20951943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ursolic acid on MAPK in cyclin D1 signaling and RING-type E3 ligase (SCF E3s) in two endometrial cancer cell lines.
    Achiwa Y; Hasegawa K; Udagawa Y
    Nutr Cancer; 2013; 65(7):1026-33. PubMed ID: 24083669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of dimerization-dependent ubiquitination by the SCF(Fbx4) ubiquitin ligase.
    Li Y; Hao B
    J Biol Chem; 2010 Apr; 285(18):13896-906. PubMed ID: 20181953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate.
    Bornstein G; Ganoth D; Hershko A
    Proc Natl Acad Sci U S A; 2006 Aug; 103(31):11515-20. PubMed ID: 16861300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNA-223 regulates cyclin E activity by modulating expression of F-box and WD-40 domain protein 7.
    Xu Y; Sengupta T; Kukreja L; Minella AC
    J Biol Chem; 2010 Nov; 285(45):34439-46. PubMed ID: 20826802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel mechanism by which thiazolidinediones facilitate the proteasomal degradation of cyclin D1 in cancer cells.
    Wei S; Yang HC; Chuang HC; Yang J; Kulp SK; Lu PJ; Lai MD; Chen CS
    J Biol Chem; 2008 Sep; 283(39):26759-70. PubMed ID: 18650423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA damage-dependent cyclin D1 proteolysis: GSK3beta holds the smoking gun.
    Pontano LL; Diehl JA
    Cell Cycle; 2009 Mar; 8(6):824-7. PubMed ID: 19221502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotoxic stress-induced cyclin D1 phosphorylation and proteolysis are required for genomic stability.
    Pontano LL; Aggarwal P; Barbash O; Brown EJ; Bassing CH; Diehl JA
    Mol Cell Biol; 2008 Dec; 28(23):7245-58. PubMed ID: 18809569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. F-box proteins FBXO31 and FBX4 in regulation of cyclin D1 degradation upon DNA damage.
    Jia L; Sun Y
    Pigment Cell Melanoma Res; 2009 Oct; 22(5):518-9. PubMed ID: 19645770
    [No Abstract]   [Full Text] [Related]  

  • 19. Adenovirus E1A inhibits SCF(Fbw7) ubiquitin ligase.
    Isobe T; Hattori T; Kitagawa K; Uchida C; Kotake Y; Kosugi I; Oda T; Kitagawa M
    J Biol Chem; 2009 Oct; 284(41):27766-27779. PubMed ID: 19679664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear accumulation of cyclin D1 during S phase inhibits Cul4-dependent Cdt1 proteolysis and triggers p53-dependent DNA rereplication.
    Aggarwal P; Lessie MD; Lin DI; Pontano L; Gladden AB; Nuskey B; Goradia A; Wasik MA; Klein-Szanto AJ; Rustgi AK; Bassing CH; Diehl JA
    Genes Dev; 2007 Nov; 21(22):2908-22. PubMed ID: 18006686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.