These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21911595)

  • 1. The multiple contributions of phytochromes to the control of internode elongation in rice.
    Iwamoto M; Kiyota S; Hanada A; Yamaguchi S; Takano M
    Plant Physiol; 2011 Nov; 157(3):1187-95. PubMed ID: 21911595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the role of gibberellins and ethylene in response to submergence of two lowland rice cultivars, Senia and Bomba.
    Dubois V; Moritz T; García-Martínez JL
    J Plant Physiol; 2011 Feb; 168(3):233-41. PubMed ID: 20889230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACO1, a gene for aminocyclopropane-1-carboxylate oxidase: effects on internode elongation at the heading stage in rice.
    Iwamoto M; Baba-Kasai A; Kiyota S; Hara N; Takano M
    Plant Cell Environ; 2010 May; 33(5):805-15. PubMed ID: 20040065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytochrome-regulated EBL1 contributes to ACO1 upregulation in rice.
    Iwamoto M; Takano M
    Biotechnol Lett; 2011 Jan; 33(1):173-8. PubMed ID: 20872166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonistic regulation of the gibberellic acid response during stem growth in rice.
    Nagai K; Mori Y; Ishikawa S; Furuta T; Gamuyao R; Niimi Y; Hobo T; Fukuda M; Kojima M; Takebayashi Y; Fukushima A; Himuro Y; Kobayashi M; Ackley W; Hisano H; Sato K; Yoshida A; Wu J; Sakakibara H; Sato Y; Tsuji H; Akagi T; Ashikari M
    Nature; 2020 Aug; 584(7819):109-114. PubMed ID: 32669710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptochrome and phytochrome cooperatively but independently reduce active gibberellin content in rice seedlings under light irradiation.
    Hirose F; Inagaki N; Hanada A; Yamaguchi S; Kamiya Y; Miyao A; Hirochika H; Takano M
    Plant Cell Physiol; 2012 Sep; 53(9):1570-82. PubMed ID: 22764280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences and similarities in the photoregulation of gibberellin metabolism between rice and dicots.
    Hirose F; Inagaki N; Takano M
    Plant Signal Behav; 2013 Mar; 8(3):e23424. PubMed ID: 23333965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice.
    Ayano M; Kani T; Kojima M; Sakakibara H; Kitaoka T; Kuroha T; Angeles-Shim RB; Kitano H; Nagai K; Ashikari M
    Plant Cell Environ; 2014 Oct; 37(10):2313-24. PubMed ID: 24891164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice.
    Tong H; Xiao Y; Liu D; Gao S; Liu L; Yin Y; Jin Y; Qian Q; Chu C
    Plant Cell; 2014 Nov; 26(11):4376-93. PubMed ID: 25371548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A transcription factor coordinating internode elongation and photoperiodic signals in rice.
    Gómez-Ariza J; Brambilla V; Vicentini G; Landini M; Cerise M; Carrera E; Shrestha R; Chiozzotto R; Galbiati F; Caporali E; López Díaz I; Fornara F
    Nat Plants; 2019 Apr; 5(4):358-362. PubMed ID: 30936438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An orchestrated ethylene-gibberellin signaling cascade contributes to mesocotyl elongation and emergence of rice direct seeding.
    Lyu Y; Dong X; Niu S; Cao R; Shao G; Sheng Z; Jiao G; Xie L; Hu S; Tang S; Wei X; Hu P
    J Integr Plant Biol; 2024 Jul; 66(7):1427-1439. PubMed ID: 38751025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethylene is not involved in adaptive responses to flooding in the Amazonian wild rice species Oryza grandiglumis.
    Okishio T; Sasayama D; Hirano T; Akimoto M; Itoh K; Azuma T
    J Plant Physiol; 2015 Feb; 174():49-54. PubMed ID: 25462966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid.
    Wang L; Mu C; Du M; Chen Y; Tian X; Zhang M; Li Z
    Plant Sci; 2014 Aug; 225():15-23. PubMed ID: 25017155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling.
    Zhou X; Zhang ZL; Park J; Tyler L; Yusuke J; Qiu K; Nam EA; Lumba S; Desveaux D; McCourt P; Kamiya Y; Sun TP
    Plant Physiol; 2016 Aug; 171(4):2760-70. PubMed ID: 27255484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress.
    Todaka D; Nakashima K; Maruyama K; Kidokoro S; Osakabe Y; Ito Y; Matsukura S; Fujita Y; Yoshiwara K; Ohme-Takagi M; Kojima M; Sakakibara H; Shinozaki K; Yamaguchi-Shinozaki K
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15947-52. PubMed ID: 22984180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice.
    Magome H; Nomura T; Hanada A; Takeda-Kamiya N; Ohnishi T; Shinma Y; Katsumata T; Kawaide H; Kamiya Y; Yamaguchi S
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1947-52. PubMed ID: 23319637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel rice protein family of OsHIGDs may be involved in early signalling of hypoxia-promoted stem growth in deepwater rice.
    Hwang ST; Choi D
    Plant Cell Rep; 2016 Oct; 35(10):2021-31. PubMed ID: 27306456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery.
    Kim J; Wilson RL; Case JB; Binder BM
    Plant Physiol; 2012 Nov; 160(3):1567-80. PubMed ID: 22977279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gibberellins regulate the stem elongation rate without affecting the mature plant height of a quick development mutant of winter wheat (Triticum aestivum L.).
    Zhang N; Xie YD; Guo HJ; Zhao LS; Xiong HC; Gu JY; Li JH; Kong FQ; Sui L; Zhao ZW; Zhao SR; Liu LX
    Plant Physiol Biochem; 2016 Oct; 107():228-236. PubMed ID: 27317908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice.
    Takano M; Inagaki N; Xie X; Kiyota S; Baba-Kasai A; Tanabata T; Shinomura T
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14705-10. PubMed ID: 19706555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.