These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21911608)

  • 21. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Voltage-gated sodium channels shape subthreshold EPSPs in layer 5 pyramidal neurons from rat prefrontal cortex.
    González-Burgos G; Barrionuevo G
    J Neurophysiol; 2001 Oct; 86(4):1671-84. PubMed ID: 11600631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Region-specific spike-frequency acceleration in layer 5 pyramidal neurons mediated by Kv1 subunits.
    Miller MN; Okaty BW; Nelson SB
    J Neurosci; 2008 Dec; 28(51):13716-26. PubMed ID: 19091962
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential regulation of action potential firing in adult murine thalamocortical neurons by Kv3.2, Kv1, and SK potassium and N-type calcium channels.
    Kasten MR; Rudy B; Anderson MP
    J Physiol; 2007 Oct; 584(Pt 2):565-82. PubMed ID: 17761775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dopamine D1-class receptors selectively modulate a slowly inactivating potassium current in rat medial prefrontal cortex pyramidal neurons.
    Dong Y; White FJ
    J Neurosci; 2003 Apr; 23(7):2686-95. PubMed ID: 12684454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postnatal development of A-type and Kv1- and Kv2-mediated potassium channel currents in neocortical pyramidal neurons.
    Guan D; Horton LR; Armstrong WE; Foehring RC
    J Neurophysiol; 2011 Jun; 105(6):2976-88. PubMed ID: 21451062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two heteromeric Kv1 potassium channels differentially regulate action potential firing.
    Dodson PD; Barker MC; Forsythe ID
    J Neurosci; 2002 Aug; 22(16):6953-61. PubMed ID: 12177193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potassium currents in octopus cells of the mammalian cochlear nucleus.
    Bal R; Oertel D
    J Neurophysiol; 2001 Nov; 86(5):2299-311. PubMed ID: 11698520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Abnormal axonal physiology is associated with altered expression and distribution of Kv1.1 and Kv1.2 K+ channels after chronic spinal cord injury.
    Nashmi R; Jones OT; Fehlings MG
    Eur J Neurosci; 2000 Feb; 12(2):491-506. PubMed ID: 10712629
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SK (KCa2) channels do not control somatic excitability in CA1 pyramidal neurons but can be activated by dendritic excitatory synapses and regulate their impact.
    Gu N; Hu H; Vervaeke K; Storm JF
    J Neurophysiol; 2008 Nov; 100(5):2589-604. PubMed ID: 18684909
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells.
    Gu N; Vervaeke K; Storm JF
    J Physiol; 2007 May; 580(Pt.3):859-82. PubMed ID: 17303637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of Kv7-mediated potassium current to sub- and suprathreshold responses of rat layer II/III neocortical pyramidal neurons.
    Guan D; Higgs MH; Horton LR; Spain WJ; Foehring RC
    J Neurophysiol; 2011 Oct; 106(4):1722-33. PubMed ID: 21697446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A developmental switch to GABAergic inhibition dependent on increases in Kv1-type K+ currents.
    Howard MA; Burger RM; Rubel EW
    J Neurosci; 2007 Feb; 27(8):2112-23. PubMed ID: 17314306
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons.
    Nisenbaum ES; Xu ZC; Wilson CJ
    J Neurophysiol; 1994 Mar; 71(3):1174-89. PubMed ID: 8201411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons.
    Wilson CJ; Weyrick A; Terman D; Hallworth NE; Bevan MD
    J Neurophysiol; 2004 May; 91(5):1963-80. PubMed ID: 14702332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons.
    Sciamanna G; Wilson CJ
    J Neurophysiol; 2011 Dec; 106(6):2936-49. PubMed ID: 21880937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release.
    Hu H; Shao LR; Chavoshy S; Gu N; Trieb M; Behrens R; Laake P; Pongs O; Knaus HG; Ottersen OP; Storm JF
    J Neurosci; 2001 Dec; 21(24):9585-97. PubMed ID: 11739569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients.
    Korngreen A; Sakmann B
    J Physiol; 2000 Jun; 525 Pt 3(Pt 3):621-39. PubMed ID: 10856117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heteromultimeric Kv1 channels contribute to myogenic control of arterial diameter.
    Plane F; Johnson R; Kerr P; Wiehler W; Thorneloe K; Ishii K; Chen T; Cole W
    Circ Res; 2005 Feb; 96(2):216-24. PubMed ID: 15618540
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulus-evoked modulation of sensorimotor pyramidal neuron EPSPs.
    Kohn A; Metz C; Tommerdahl MA; Whitsel BL
    J Neurophysiol; 2002 Dec; 88(6):3331-47. PubMed ID: 12466450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.