BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21911611)

  • 1. Sexual dimorphism and oestrogen regulation of KCNE3 expression modulates the functional properties of KCNQ1 K⁺ channels.
    Alzamora R; O'Mahony F; Bustos V; Rapetti-Mauss R; Urbach V; Cid LP; Sepúlveda FV; Harvey BJ
    J Physiol; 2011 Nov; 589(Pt 21):5091-107. PubMed ID: 21911611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Female gender-specific inhibition of KCNQ1 channels and chloride secretion by 17beta-estradiol in rat distal colonic crypts.
    O'Mahony F; Alzamora R; Betts V; LaPaix F; Carter D; Irnaten M; Harvey BJ
    J Biol Chem; 2007 Aug; 282(34):24563-73. PubMed ID: 17556370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upregulation of basolateral small conductance potassium channels (KCNQ1/KCNE3) in ulcerative colitis.
    Al-Hazza A; Linley J; Aziz Q; Hunter M; Sandle G
    Biochem Biophys Res Commun; 2016 Feb; 470(2):473-478. PubMed ID: 26718405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions.
    Barro-Soria R; Ramentol R; Liin SI; Perez ME; Kass RS; Larsson HP
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7367-E7376. PubMed ID: 28808020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancillary subunits and stimulation frequency determine the potency of chromanol 293B block of the KCNQ1 potassium channel.
    Bett GC; Morales MJ; Beahm DL; Duffey ME; Rasmusson RL
    J Physiol; 2006 Nov; 576(Pt 3):755-67. PubMed ID: 16887873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro molecular interactions and distribution of KCNE family with KCNQ1 in the human heart.
    Bendahhou S; Marionneau C; Haurogne K; Larroque MM; Derand R; Szuts V; Escande D; Demolombe S; Barhanin J
    Cardiovasc Res; 2005 Aug; 67(3):529-38. PubMed ID: 16039274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oestrogen promotes KCNQ1 potassium channel endocytosis and postendocytic trafficking in colonic epithelium.
    Rapetti-Mauss R; O'Mahony F; Sepulveda FV; Urbach V; Harvey BJ
    J Physiol; 2013 Jun; 591(11):2813-31. PubMed ID: 23529131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K
    Julio-Kalajzić F; Villanueva S; Burgos J; Ojeda M; Cid LP; Jentsch TJ; Sepúlveda FV
    J Physiol; 2018 Feb; 596(3):393-407. PubMed ID: 29143340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KCNE peptides differently affect voltage sensor equilibrium and equilibration rates in KCNQ1 K+ channels.
    Rocheleau JM; Kobertz WR
    J Gen Physiol; 2008 Jan; 131(1):59-68. PubMed ID: 18079560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation and properties of KCNQ1 (K(V)LQT1) and impact of the cystic fibrosis transmembrane conductance regulator.
    Boucherot A; Schreiber R; Kunzelmann K
    J Membr Biol; 2001 Jul; 182(1):39-47. PubMed ID: 11426298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colocalization of KCNQ1/KCNE channel subunits in the mouse gastrointestinal tract.
    Dedek K; Waldegger S
    Pflugers Arch; 2001 Sep; 442(6):896-902. PubMed ID: 11680623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel.
    Kurokawa J; Bankston JR; Kaihara A; Chen L; Furukawa T; Kass RS
    Channels (Austin); 2009; 3(1):16-24. PubMed ID: 19077539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K+ channel KVLQT1 located in the basolateral membrane of distal colonic epithelium is not essential for activating Cl- secretion.
    Liao T; Wang L; Halm ST; Lu L; Fyffe RE; Halm DR
    Am J Physiol Cell Physiol; 2005 Sep; 289(3):C564-75. PubMed ID: 15843438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the K+ channel beta-subunit KCNE3 reveals an important role in intestinal and tracheal Cl- transport.
    Preston P; Wartosch L; Günzel D; Fromm M; Kongsuphol P; Ousingsawat J; Kunzelmann K; Barhanin J; Warth R; Jentsch TJ
    J Biol Chem; 2010 Mar; 285(10):7165-75. PubMed ID: 20051516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KCNE4 domains required for inhibition of KCNQ1.
    Manderfield LJ; Daniels MA; Vanoye CG; George AL
    J Physiol; 2009 Jan; 587(2):303-14. PubMed ID: 19029186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KCNE3 truncation mutants reveal a bipartite modulation of KCNQ1 K+ channels.
    Gage SD; Kobertz WR
    J Gen Physiol; 2004 Dec; 124(6):759-71. PubMed ID: 15572349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of multiple KCNE genes in human heart may enable variable modulation of I(Ks).
    Lundquist AL; Manderfield LJ; Vanoye CG; Rogers CS; Donahue BS; Chang PA; Drinkwater DC; Murray KT; George AL
    J Mol Cell Cardiol; 2005 Feb; 38(2):277-87. PubMed ID: 15698834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and function of the rat colonic epithelial K+ channel KVLQT1.
    Kunzelmann K; Hübner M; Schreiber R; Levy-Holzman R; Garty H; Bleich M; Warth R; Slavik M; von Hahn T; Greger R
    J Membr Biol; 2001 Jan; 179(2):155-64. PubMed ID: 11220365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. KCNE3 acts by promoting voltage sensor activation in KCNQ1.
    Barro-Soria R; Perez ME; Larsson HP
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):E7286-92. PubMed ID: 26668384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel KCNE3 mutation reduces repolarizing potassium current and associated with long QT syndrome.
    Ohno S; Toyoda F; Zankov DP; Yoshida H; Makiyama T; Tsuji K; Honda T; Obayashi K; Ueyama H; Shimizu W; Miyamoto Y; Kamakura S; Matsuura H; Kita T; Horie M
    Hum Mutat; 2009 Apr; 30(4):557-63. PubMed ID: 19306396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.