These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Adenosine Triphosphate-Sensitive Potassium Channel Kir Subunits Implicated in Cardioprotection by Diazoxide. Henn MC; Janjua MB; Kanter EM; Makepeace CM; Schuessler RB; Nichols CG; Lawton JS J Am Heart Assoc; 2015 Aug; 4(8):e002016. PubMed ID: 26304939 [TBL] [Abstract][Full Text] [Related]
8. Maintenance of myocyte volume homeostasis during stress by diazoxide is cardioprotective. Al-Dadah AS; Voeller RK; Schuessler RB; Damiano RJ; Lawton JS Ann Thorac Surg; 2007 Sep; 84(3):857-62. PubMed ID: 17720390 [TBL] [Abstract][Full Text] [Related]
9. Myocyte volume and function in response to osmotic stress: observations in the presence of an adenosine triphosphate-sensitive potassium channel opener. Mizutani S; Prasad SM; Sellitto AD; Schuessler RB; Damiano RJ; Lawton JS Circulation; 2005 Aug; 112(9 Suppl):I219-23. PubMed ID: 16159820 [TBL] [Abstract][Full Text] [Related]
10. Cardioprotective benefits of adenosine triphosphate-sensitive potassium channel opener diazoxide are lost with administration after the onset of stress in mouse and human myocytes. Janjua MB; Makepeace CM; Anastacio MM; Schuessler RB; Nichols CG; Lawton JS J Am Coll Surg; 2014 Oct; 219(4):803-13. PubMed ID: 25158912 [TBL] [Abstract][Full Text] [Related]
11. Reduced effectiveness of HMR 1098 in blocking cardiac sarcolemmal K(ATP) channels during metabolic stress. Rainbow RD; Norman RI; Hudman D; Davies NW; Standen NB J Mol Cell Cardiol; 2005 Oct; 39(4):637-46. PubMed ID: 16099467 [TBL] [Abstract][Full Text] [Related]
12. Role of sarcolemmal ATP-sensitive K+ channels in the regulation of sinoatrial node automaticity: an evaluation using Kir6.2-deficient mice. Fukuzaki K; Sato T; Miki T; Seino S; Nakaya H J Physiol; 2008 Jun; 586(11):2767-78. PubMed ID: 18420708 [TBL] [Abstract][Full Text] [Related]
13. Cardioprotective mechanism of diazoxide involves the inhibition of succinate dehydrogenase. Anastacio MM; Kanter EM; Makepeace C; Keith AD; Zhang H; Schuessler RB; Nichols CG; Lawton JS Ann Thorac Surg; 2013 Jun; 95(6):2042-50. PubMed ID: 23642436 [TBL] [Abstract][Full Text] [Related]
14. 5-Hydroxydecanoate and coenzyme A are inhibitors of native sarcolemmal KATP channels in inside-out patches. Li X; Rapedius M; Baukrowitz T; Liu GX; Srivastava DK; Daut J; Hanley PJ Biochim Biophys Acta; 2010 Mar; 1800(3):385-91. PubMed ID: 19931596 [TBL] [Abstract][Full Text] [Related]
15. Disruption of sarcolemmal ATP-sensitive potassium channel activity impairs the cardiac response to systolic overload. Hu X; Xu X; Huang Y; Fassett J; Flagg TP; Zhang Y; Nichols CG; Bache RJ; Chen Y Circ Res; 2008 Oct; 103(9):1009-17. PubMed ID: 18802029 [TBL] [Abstract][Full Text] [Related]
16. Preservation of myocyte contractile function after hyperthermic cardioplegic arrest by activation of ATP-sensitive potassium channels. Dorman BH; Hebbar L; Hinton RB; Roy RC; Spinale FG Circulation; 1997 Oct; 96(7):2376-84. PubMed ID: 9337214 [TBL] [Abstract][Full Text] [Related]
17. Unique properties of the ATP-sensitive K⁺ channel in the mouse ventricular cardiac conduction system. Bao L; Kefaloyianni E; Lader J; Hong M; Morley G; Fishman GI; Sobie EA; Coetzee WA Circ Arrhythm Electrophysiol; 2011 Dec; 4(6):926-35. PubMed ID: 21984445 [TBL] [Abstract][Full Text] [Related]
18. HMR 1098 is not an SUR isotype specific inhibitor of heterologous or sarcolemmal K ATP channels. Zhang HX; Akrouh A; Kurata HT; Remedi MS; Lawton JS; Nichols CG J Mol Cell Cardiol; 2011 Mar; 50(3):552-60. PubMed ID: 21185839 [TBL] [Abstract][Full Text] [Related]
19. Pharmacological comparison of native mitochondrial K(ATP) channels with molecularly defined surface K(ATP) channels. Liu Y; Ren G; O'Rourke B; Marbán E; Seharaseyon J Mol Pharmacol; 2001 Feb; 59(2):225-30. PubMed ID: 11160857 [TBL] [Abstract][Full Text] [Related]