BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 21911936)

  • 1. Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice.
    Asada N; Takase M; Nakamura J; Oguchi A; Asada M; Suzuki N; Yamamura K; Nagoshi N; Shibata S; Rao TN; Fehling HJ; Fukatsu A; Minegishi N; Kita T; Kimura T; Okano H; Yamamoto M; Yanagita M
    J Clin Invest; 2011 Oct; 121(10):3981-90. PubMed ID: 21911936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An immortalized cell line derived from renal erythropoietin-producing (REP) cells demonstrates their potential to transform into myofibroblasts.
    Sato K; Hirano I; Sekine H; Miyauchi K; Nakai T; Kato K; Ito S; Yamamoto M; Suzuki N
    Sci Rep; 2019 Aug; 9(1):11254. PubMed ID: 31375751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal Cell Protection of Erythropoietin beyond Correcting The Anemia in Chronic Kidney Disease Patients.
    Nasri H
    Cell J; 2014; 15(4):378-80. PubMed ID: 24381864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of myofibroblasts and cellular events triggering fibrosis.
    Mack M; Yanagita M
    Kidney Int; 2015 Feb; 87(2):297-307. PubMed ID: 25162398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lineage tracing analysis defines erythropoietin-producing cells as a distinct subpopulation of resident fibroblasts with unique behaviors.
    Kaneko K; Sato Y; Uchino E; Toriu N; Shigeta M; Kiyonari H; Endo S; Fukuma S; Yanagita M
    Kidney Int; 2022 Aug; 102(2):280-292. PubMed ID: 35644281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibroblasts and myofibroblasts in renal fibrosis.
    Meran S; Steadman R
    Int J Exp Pathol; 2011 Jun; 92(3):158-67. PubMed ID: 21355940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of renal erythropoietin-producing cells governs fibrosis.
    Souma T; Yamazaki S; Moriguchi T; Suzuki N; Hirano I; Pan X; Minegishi N; Abe M; Kiyomoto H; Ito S; Yamamoto M
    J Am Soc Nephrol; 2013 Oct; 24(10):1599-616. PubMed ID: 23833259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal interstitial fibroblasts coproduce erythropoietin and renin under anaemic conditions.
    Miyauchi K; Nakai T; Saito S; Yamamoto T; Sato K; Kato K; Nezu M; Miyazaki M; Ito S; Yamamoto M; Suzuki N
    EBioMedicine; 2021 Feb; 64():103209. PubMed ID: 33508746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis.
    Humphreys BD; Lin SL; Kobayashi A; Hudson TE; Nowlin BT; Bonventre JV; Valerius MT; McMahon AP; Duffield JS
    Am J Pathol; 2010 Jan; 176(1):85-97. PubMed ID: 20008127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Janus-Faced: Molecular Mechanisms and Versatile Nature of Renal Fibrosis.
    Arai H; Yanagita M
    Kidney360; 2020 Jul; 1(7):697-704. PubMed ID: 35372942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chemokine receptor CXCR6 contributes to recruitment of bone marrow-derived fibroblast precursors in renal fibrosis.
    Xia Y; Yan J; Jin X; Entman ML; Wang Y
    Kidney Int; 2014 Aug; 86(2):327-37. PubMed ID: 24646857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts.
    Barnes JL; Glass Ii WF
    Contrib Nephrol; 2011; 169():73-93. PubMed ID: 21252512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nupr1 mediates renal fibrosis via activating fibroblast and promoting epithelial-mesenchymal transition.
    Zhou R; Liao J; Cai D; Tian Q; Huang E; Lü T; Chen SY; Xie WB
    FASEB J; 2021 Mar; 35(3):e21381. PubMed ID: 33617091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysregulated mesenchymal PDGFR-β drives kidney fibrosis.
    Buhl EM; Djudjaj S; Klinkhammer BM; Ermert K; Puelles VG; Lindenmeyer MT; Cohen CD; He C; Borkham-Kamphorst E; Weiskirchen R; Denecke B; Trairatphisan P; Saez-Rodriguez J; Huber TB; Olson LE; Floege J; Boor P
    EMBO Mol Med; 2020 Mar; 12(3):e11021. PubMed ID: 31943786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erythropoietin Synthesis in Renal Myofibroblasts Is Restored by Activation of Hypoxia Signaling.
    Souma T; Nezu M; Nakano D; Yamazaki S; Hirano I; Sekine H; Dan T; Takeda K; Fong GH; Nishiyama A; Ito S; Miyata T; Yamamoto M; Suzuki N
    J Am Soc Nephrol; 2016 Feb; 27(2):428-38. PubMed ID: 26054543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition.
    Zeisberg EM; Potenta SE; Sugimoto H; Zeisberg M; Kalluri R
    J Am Soc Nephrol; 2008 Dec; 19(12):2282-7. PubMed ID: 18987304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys.
    Chang YT; Yang CC; Pan SY; Chou YH; Chang FC; Lai CF; Tsai MH; Hsu HL; Lin CH; Chiang WC; Wu MS; Chu TS; Chen YM; Lin SL
    J Clin Invest; 2016 Feb; 126(2):721-31. PubMed ID: 26731474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis.
    Wu CF; Chiang WC; Lai CF; Chang FC; Chen YT; Chou YH; Wu TH; Linn GR; Ling H; Wu KD; Tsai TJ; Chen YM; Duffield JS; Lin SL
    Am J Pathol; 2013 Jan; 182(1):118-31. PubMed ID: 23142380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiology of the Renal Interstitium.
    Zeisberg M; Kalluri R
    Clin J Am Soc Nephrol; 2015 Oct; 10(10):1831-40. PubMed ID: 25813241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of transforming growth factor β1 signaling in resident interstitial cells attenuates profibrotic gene expression and preserves erythropoietin production during experimental kidney fibrosis in mice.
    Fuchs MAA; Broeker KAE; Schrankl J; Burzlaff N; Willam C; Wagner C; Kurtz A
    Kidney Int; 2021 Jul; 100(1):122-137. PubMed ID: 33705825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.