BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21912613)

  • 1. Activation of oxidative stress-regulated Bcl-3 suppresses CTCF in corneal epithelial cells.
    Wang Y; Lu L
    PLoS One; 2011; 6(8):e23984. PubMed ID: 21912613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidermal growth factor (EGF)-induced corneal epithelial wound healing through nuclear factor κB subtype-regulated CCCTC binding factor (CTCF) activation.
    Wang L; Wu X; Shi T; Lu L
    J Biol Chem; 2013 Aug; 288(34):24363-71. PubMed ID: 23843455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NF-kappaB subtypes regulate CCCTC binding factor affecting corneal epithelial cell fate.
    Lu L; Wang L; Li T; Wang J
    J Biol Chem; 2010 Mar; 285(13):9373-9382. PubMed ID: 20110362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of CTCF in EGF-induced migration of immortalized human corneal epithelial cells.
    Wang L; Deng SX; Lu L
    Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):946-51. PubMed ID: 22247490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of transcription by B cell Leukemia 3 (Bcl-3) protein requires interaction with nuclear factor κB (NF-κB) p50.
    Collins PE; Kiely PA; Carmody RJ
    J Biol Chem; 2014 Mar; 289(10):7059-7067. PubMed ID: 24459141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De-SUMOylation of CCCTC binding factor (CTCF) in hypoxic stress-induced human corneal epithelial cells.
    Wang J; Wang Y; Lu L
    J Biol Chem; 2012 Apr; 287(15):12469-79. PubMed ID: 22354964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of CTCF-binding motif on regulation of PAX6 transcription.
    Wu D; Li T; Lu Z; Dai W; Xu M; Lu L
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2422-9. PubMed ID: 16723452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the Interaction of B Cell Leukemia 3 (BCL-3) and Nuclear Factor κB (NF-κB) p50 Identifies a BCL-3-mimetic Anti-inflammatory Peptide.
    Collins PE; Grassia G; Colleran A; Kiely PA; Ialenti A; Maffia P; Carmody RJ
    J Biol Chem; 2015 Jun; 290(25):15687-15696. PubMed ID: 25922067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Nuclear Protein IκBζ Forms a Transcriptionally Active Complex with Nuclear Factor-κB (NF-κB) p50 and the Lcn2 Promoter via the N- and C-terminal Ankyrin Repeat Motifs.
    Kohda A; Yamazaki S; Sumimoto H
    J Biol Chem; 2016 Sep; 291(39):20739-52. PubMed ID: 27489104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative, multistep activation of the noncanonical NF-kappaB pathway via disulfide Bcl-3/p50 complex.
    Cristofanon S; Morceau F; Scovassi AI; Dicato M; Ghibelli L; Diederich M
    FASEB J; 2009 Jan; 23(1):45-57. PubMed ID: 18796561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidermal growth factor-induced proliferation requires down-regulation of Pax6 in corneal epithelial cells.
    Li T; Lu L
    J Biol Chem; 2005 Apr; 280(13):12988-95. PubMed ID: 15659382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis.
    Li T; Lu L
    Exp Cell Res; 2007 Aug; 313(14):3057-65. PubMed ID: 17583694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of epidermal growth factor receptor expression by Epstein-Barr virus latent membrane protein 1 C-terminal-activating region 1 is mediated by NF-kappaB p50 homodimer/Bcl-3 complexes.
    Thornburg NJ; Raab-Traub N
    J Virol; 2007 Dec; 81(23):12954-61. PubMed ID: 17881446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation.
    Tsui S; Wang J; Wang L; Dai W; Lu L
    PLoS One; 2016; 11(9):e0162071. PubMed ID: 27583466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor through effects on Bcl-3 and STAT3.
    Kung CP; Raab-Traub N
    J Virol; 2008 Jun; 82(11):5486-93. PubMed ID: 18367518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NF-kappaB p105 is a target of IkappaB kinases and controls signal induction of Bcl-3-p50 complexes.
    Heissmeyer V; Krappmann D; Wulczyn FG; Scheidereit C
    EMBO J; 1999 Sep; 18(17):4766-78. PubMed ID: 10469655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cis-urocanic acid inhibits SAPK/JNK signaling pathway in UV-B exposed human corneal epithelial cells in vitro.
    Jauhonen HM; Kauppinen A; Paimela T; Laihia JK; Leino L; Salminen A; Kaarniranta K
    Mol Vis; 2011; 17():2311-7. PubMed ID: 21921982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel pathway links oxidative stress to loss of insulin growth factor-2 (IGF2) imprinting through NF-κB activation.
    Yang B; Wagner J; Damaschke N; Yao T; Wuerzberger-Davis SM; Lee MH; Svaren J; Miyamoto S; Jarrard DF
    PLoS One; 2014; 9(2):e88052. PubMed ID: 24558376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma.
    Thornburg NJ; Pathmanathan R; Raab-Traub N
    Cancer Res; 2003 Dec; 63(23):8293-301. PubMed ID: 14678988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bcl-3 and NFkappaB p50-p50 homodimers act as transcriptional repressors in tolerant CD4+ T cells.
    Grundström S; Anderson P; Scheipers P; Sundstedt A
    J Biol Chem; 2004 Feb; 279(9):8460-8. PubMed ID: 14668329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.