These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 21912697)
1. Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington's disease transgenic mice. Rajput PS; Kharmate G; Norman M; Liu SH; Sastry BR; Brunicardi CF; Kumar U PLoS One; 2011; 6(9):e24467. PubMed ID: 21912697 [TBL] [Abstract][Full Text] [Related]
2. Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice. Sun Z; Wang HB; Deng YP; Lei WL; Xie JP; Meade CA; Del Mar N; Goldowitz D; Reiner A Neurobiol Dis; 2005 Dec; 20(3):907-17. PubMed ID: 15990326 [TBL] [Abstract][Full Text] [Related]
3. Somatostatin in medium-sized aspiny interneurons of striatum is responsible for their preservation in quinolinic acid and N-methyl-D-asparate-induced neurotoxicity. Kumar U J Mol Neurosci; 2008 Jul; 35(3):345-54. PubMed ID: 18483877 [TBL] [Abstract][Full Text] [Related]
4. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease. Huang Q; Zhou D; Sapp E; Aizawa H; Ge P; Bird ED; Vonsattel JP; DiFiglia M Neuroscience; 1995 Mar; 65(2):397-407. PubMed ID: 7777157 [TBL] [Abstract][Full Text] [Related]
5. Characterization of striatal cultures with the effect of QUIN and NMDA. Kumar U Neurosci Res; 2004 May; 49(1):29-38. PubMed ID: 15099701 [TBL] [Abstract][Full Text] [Related]
6. Colocalization of somatostatin receptors with DARPP-32 in cortex and striatum of rat brain. Rajput PS; Kharmate G; Kumar U J Mol Neurosci; 2012 Nov; 48(3):696-705. PubMed ID: 22116741 [TBL] [Abstract][Full Text] [Related]
7. Intranuclear inclusions in subtypes of striatal neurons in Huntington's disease transgenic mice. Kosinski CM; Cha JH; Young AB; Mangiarini L; Bates G; Schiefer J; Schwarz M Neuroreport; 1999 Dec; 10(18):3891-6. PubMed ID: 10716229 [TBL] [Abstract][Full Text] [Related]
8. Immunohistochemical localization of receptor for advanced glycation end (RAGE) products in the R6/2 mouse model of Huntington's disease. Anzilotti S; Giampà C; Laurenti D; Perrone L; Bernardi G; Melone MA; Fusco FR Brain Res Bull; 2012 Feb; 87(2-3):350-8. PubMed ID: 21272617 [TBL] [Abstract][Full Text] [Related]
9. Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine. Petersén A; Hansson O; Puschban Z; Sapp E; Romero N; Castilho RF; Sulzer D; Rice M; DiFiglia M; Przedborski S; Brundin P Eur J Neurosci; 2001 Nov; 14(9):1425-35. PubMed ID: 11722604 [TBL] [Abstract][Full Text] [Related]
10. N-Acetylaspartate and DARPP-32 levels decrease in the corpus striatum of Huntington's disease mice. van Dellen A; Welch J; Dixon RM; Cordery P; York D; Styles P; Blakemore C; Hannan AJ Neuroreport; 2000 Nov; 11(17):3751-7. PubMed ID: 11117485 [TBL] [Abstract][Full Text] [Related]
11. NMDA receptor function in mouse models of Huntington disease. Cepeda C; Ariano MA; Calvert CR; Flores-Hernández J; Chandler SH; Leavitt BR; Hayden MR; Levine MS J Neurosci Res; 2001 Nov; 66(4):525-39. PubMed ID: 11746372 [TBL] [Abstract][Full Text] [Related]
12. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease. Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655 [TBL] [Abstract][Full Text] [Related]
13. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects. Faideau M; Kim J; Cormier K; Gilmore R; Welch M; Auregan G; Dufour N; Guillermier M; Brouillet E; Hantraye P; Déglon N; Ferrante RJ; Bonvento G Hum Mol Genet; 2010 Aug; 19(15):3053-67. PubMed ID: 20494921 [TBL] [Abstract][Full Text] [Related]
14. Activation of NPY-Y2 receptors ameliorates disease pathology in the R6/2 mouse and PC12 cell models of Huntington's disease. Fatoba O; Kloster E; Reick C; Saft C; Gold R; Epplen JT; Arning L; Ellrichmann G Exp Neurol; 2018 Apr; 302():112-128. PubMed ID: 29309751 [TBL] [Abstract][Full Text] [Related]
15. Transcriptional dysregulation in striatal projection- and interneurons in a mouse model of Huntington's disease: neuronal selectivity and potential neuroprotective role of HAP1. Zucker B; Luthi-Carter R; Kama JA; Dunah AW; Stern EA; Fox JH; Standaert DG; Young AB; Augood SJ Hum Mol Genet; 2005 Jan; 14(2):179-89. PubMed ID: 15548548 [TBL] [Abstract][Full Text] [Related]
16. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease. Starling AJ; André VM; Cepeda C; de Lima M; Chandler SH; Levine MS J Neurosci Res; 2005 Nov; 82(3):377-86. PubMed ID: 16211559 [TBL] [Abstract][Full Text] [Related]
17. Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington's disease. Hughes PE; Alexi T; Williams CE; Clark RG; Gluckman PD Neuroscience; 1999; 92(1):197-209. PubMed ID: 10392842 [TBL] [Abstract][Full Text] [Related]
18. Characterization of somatostatin receptors and associated signaling pathways in pancreas of R6/2 transgenic mice. Somvanshi RK; Jhajj A; Heer M; Kumar U Biochim Biophys Acta Mol Basis Dis; 2018 Feb; 1864(2):359-373. PubMed ID: 29104117 [TBL] [Abstract][Full Text] [Related]