These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 21912739)

  • 1. Role of microbial enzymes in the bioremediation of pollutants: a review.
    Karigar CS; Rao SS
    Enzyme Res; 2011; 2011():805187. PubMed ID: 21912739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.
    Sivaperumal P; Kamala K; Rajaram R
    Adv Food Nutr Res; 2017; 80():165-179. PubMed ID: 28215325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An innovative approach of bioremediation in enzymatic degradation of xenobiotics.
    Rathore S; Varshney A; Mohan S; Dahiya P
    Biotechnol Genet Eng Rev; 2022 Apr; 38(1):1-32. PubMed ID: 35081881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment.
    Bhatt P; Pandey SC; Joshi S; Chaudhary P; Pathak VM; Huang Y; Wu X; Zhou Z; Chen S
    J Hazard Mater; 2022 Apr; 427():128033. PubMed ID: 34999406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contemporary enzyme based technologies for bioremediation: A review.
    Sharma B; Dangi AK; Shukla P
    J Environ Manage; 2018 Mar; 210():10-22. PubMed ID: 29329004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trends in the Bioremediation of Pharmaceuticals and Other Organic Contaminants Using Native or Genetically Modified Microbial Strains: A Review.
    Petsas AS; Vagi MC
    Curr Pharm Biotechnol; 2019; 20(10):787-824. PubMed ID: 31131748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in microbial biotransformation and biodegradation of dioxins.
    Chang YS
    J Mol Microbiol Biotechnol; 2008; 15(2-3):152-71. PubMed ID: 18685268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment.
    Chaudhry Q; Blom-Zandstra M; Gupta S; Joner EJ
    Environ Sci Pollut Res Int; 2005; 12(1):34-48. PubMed ID: 15768739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes.
    Saravanan A; Kumar PS; Vo DN; Jeevanantham S; Karishma S; Yaashikaa PR
    J Hazard Mater; 2021 Oct; 419():126451. PubMed ID: 34174628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetically engineered microbial scavengers for enhanced bioremediation.
    Tran KM; Lee HM; Thai TD; Shen J; Eyun SI; Na D
    J Hazard Mater; 2021 Oct; 419():126516. PubMed ID: 34218189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of bacterial laccases and their application in bioremediation of industrial wastes.
    Chandra R; Chowdhary P
    Environ Sci Process Impacts; 2015 Feb; 17(2):326-42. PubMed ID: 25590782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals.
    Li Q; Liu J; Gadd GM
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):8999-9008. PubMed ID: 32940735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils.
    Sharma JK; Gautam RK; Nanekar SV; Weber R; Singh BK; Singh SK; Juwarkar AA
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16355-16375. PubMed ID: 28488147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial P450 Enzymes in Bioremediation and Drug Discovery: Emerging Potentials and Challenges.
    Bhattacharya SS; Yadav JS
    Curr Protein Pept Sci; 2018; 19(1):75-86. PubMed ID: 27875967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal diversity and use in decomposition of environmental pollutants.
    Tortella GR; Diez MC; Duran N
    Crit Rev Microbiol; 2005; 31(4):197-212. PubMed ID: 16417201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of potential bioremediation enzymes from hot spring bacteria using conventional plate assays and liquid chromatography - Tandem mass spectrometry (Lc-Ms/Ms).
    Jardine JL; Stoychev S; Mavumengwana V; Ubomba-Jaswa E
    J Environ Manage; 2018 Oct; 223():787-796. PubMed ID: 29986326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids.
    Zhan H; Huang Y; Lin Z; Bhatt P; Chen S
    Environ Res; 2020 Mar; 182():109138. PubMed ID: 32069744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites.
    Ceci A; Pinzari F; Russo F; Persiani AM; Gadd GM
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):53-68. PubMed ID: 30362074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil bioremediation by cyclodextrins. A review.
    Morillo E; Madrid F; Lara-Moreno A; Villaverde J
    Int J Pharm; 2020 Dec; 591():119943. PubMed ID: 33065221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.