These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21912780)

  • 21. A site-directed mutagenesis study of the MdmX RING domain.
    Egorova O; Mis M; Sheng Y
    Biochem Biophys Res Commun; 2014 May; 447(4):696-701. PubMed ID: 24755078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recapitulation and design of protein binding peptide structures and sequences.
    Sood VD; Baker D
    J Mol Biol; 2006 Mar; 357(3):917-27. PubMed ID: 16473368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study.
    Ball ZT
    Acc Chem Res; 2013 Feb; 46(2):560-70. PubMed ID: 23210518
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A left-handed solution to peptide inhibition of the p53-MDM2 interaction.
    Liu M; Pazgier M; Li C; Yuan W; Li C; Lu W
    Angew Chem Int Ed Engl; 2010 May; 49(21):3649-52. PubMed ID: 20449836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rhodium(II) metallopeptide catalyst design enables fine control in selective functionalization of natural SH3 domains.
    Vohidov F; Coughlin JM; Ball ZT
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4587-91. PubMed ID: 25688989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. P53 mRNA controls p53 activity by managing Mdm2 functions.
    Candeias MM; Malbert-Colas L; Powell DJ; Daskalogianni C; Maslon MM; Naski N; Bourougaa K; Calvo F; Fåhraeus R
    Nat Cell Biol; 2008 Sep; 10(9):1098-105. PubMed ID: 19160491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the origin of structural stability of single and double stapled p53 peptide analogs bound to MDM2.
    Guo Z; Streu K; Krilov G; Mohanty U
    Chem Biol Drug Des; 2014 Jun; 83(6):631-42. PubMed ID: 24418072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative lid dynamics of MDM2 reveals differential ligand binding modes of the p53-binding cleft.
    Showalter SA; Bruschweiler-Li L; Johnson E; Zhang F; Brüschweiler R
    J Am Chem Soc; 2008 May; 130(20):6472-8. PubMed ID: 18435534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular rotors as conditionally fluorescent labels for rapid detection of biomolecular interactions.
    Goh WL; Lee MY; Joseph TL; Quah ST; Brown CJ; Verma C; Brenner S; Ghadessy FJ; Teo YN
    J Am Chem Soc; 2014 Apr; 136(17):6159-62. PubMed ID: 24494589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a Multifunctional Benzophenone Linker for Peptide Stapling and Photoaffinity Labelling.
    Wu Y; Olsen LB; Lau YH; Jensen CH; Rossmann M; Baker YR; Sore HF; Collins S; Spring DR
    Chembiochem; 2016 Apr; 17(8):689-92. PubMed ID: 26919579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phage-peptide display identifies the interferon-responsive, death-activated protein kinase family as a novel modifier of MDM2 and p21WAF1.
    Burch LR; Scott M; Pohler E; Meek D; Hupp T
    J Mol Biol; 2004 Mar; 337(1):115-28. PubMed ID: 15001356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conformational changes of the p53-binding cleft of MDM2 revealed by molecular dynamics simulations.
    Espinoza-Fonseca LM; Trujillo-Ferrara JG
    Biopolymers; 2006 Nov; 83(4):365-73. PubMed ID: 16817233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX.
    Hu B; Gilkes DM; Chen J
    Cancer Res; 2007 Sep; 67(18):8810-7. PubMed ID: 17875722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational design and biophysical characterization of thioredoxin-based aptamers: insights into peptide grafting.
    Brown CJ; Dastidar SG; See HY; Coomber DW; Ortiz-Lombardía M; Verma C; Lane DP
    J Mol Biol; 2010 Jan; 395(4):871-83. PubMed ID: 19895821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphoramidates as novel activity-based probes for serine proteases.
    Haedke UR; Frommel SC; Hansen F; Hahne H; Kuster B; Bogyo M; Verhelst SH
    Chembiochem; 2014 May; 15(8):1106-10. PubMed ID: 24817682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of phosphine containing amino acids: utilization of peptide synthesis in ligand design.
    Agarkov A; Greenfield S; Xie D; Pawlick R; Starkey G; Gilbertson SR
    Biopolymers; 2006; 84(1):48-73. PubMed ID: 16235230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans.
    Linke K; Mace PD; Smith CA; Vaux DL; Silke J; Day CL
    Cell Death Differ; 2008 May; 15(5):841-8. PubMed ID: 18219319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peptides as active probes.
    Undén A; Bartfai T
    EXS; 1995; 73():229-55. PubMed ID: 7579975
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A general solid phase method for the preparation of diverse azapeptide probes directed against cysteine proteases.
    Kato D; Verhelst SH; Sexton KB; Bogyo M
    Org Lett; 2005 Dec; 7(25):5649-52. PubMed ID: 16321013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Further insight into substrate recognition by USP7: structural and biochemical analysis of the HdmX and Hdm2 interactions with USP7.
    Sarkari F; La Delfa A; Arrowsmith CH; Frappier L; Sheng Y; Saridakis V
    J Mol Biol; 2010 Oct; 402(5):825-37. PubMed ID: 20713061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.