BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 21912860)

  • 1. Teosinte Branched 1 modulates tillering in rice plants.
    Choi MS; Woo MO; Koh EB; Lee J; Ham TH; Seo HS; Koh HJ
    Plant Cell Rep; 2012 Jan; 31(1):57-65. PubMed ID: 21912860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The OsTB1 gene negatively regulates lateral branching in rice.
    Takeda T; Suwa Y; Suzuki M; Kitano H; Ueguchi-Tanaka M; Ashikari M; Matsuoka M; Ueguchi C
    Plant J; 2003 Feb; 33(3):513-20. PubMed ID: 12581309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice.
    Lyu J; Huang L; Zhang S; Zhang Y; He W; Zeng P; Zeng Y; Huang G; Zhang J; Ning M; Bao Y; Zhao S; Fu Q; Wade LJ; Chen H; Wang W; Hu F
    Nat Commun; 2020 Feb; 11(1):725. PubMed ID: 32024833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-frame mutation in rice TEOSINTE BRANCHED1 (OsTB1) improves productivity under phosphorus deficiency.
    Ishizaki T; Ueda Y; Takai T; Maruyama K; Tsujimoto Y
    Plant Sci; 2023 May; 330():111627. PubMed ID: 36737003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of the maize Teosinte Branched1 gene in wheat suppresses tiller development.
    Lewis JM; Mackintosh CA; Shin S; Gilding E; Kravchenko S; Baldridge G; Zeyen R; Muehlbauer GJ
    Plant Cell Rep; 2008 Jul; 27(7):1217-25. PubMed ID: 18392625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tillering and panicle branching genes in rice.
    Liang WH; Shang F; Lin QT; Lou C; Zhang J
    Gene; 2014 Mar; 537(1):1-5. PubMed ID: 24345551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice.
    Xia K; Wang R; Ou X; Fang Z; Tian C; Duan J; Wang Y; Zhang M
    PLoS One; 2012; 7(1):e30039. PubMed ID: 22253868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14.
    Guo S; Xu Y; Liu H; Mao Z; Zhang C; Ma Y; Zhang Q; Meng Z; Chong K
    Nat Commun; 2013; 4():1566. PubMed ID: 23463009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Rice Circadian Clock Regulates Tiller Growth and Panicle Development Through Strigolactone Signaling and Sugar Sensing.
    Wang F; Han T; Song Q; Ye W; Song X; Chu J; Li J; Chen ZJ
    Plant Cell; 2020 Oct; 32(10):3124-3138. PubMed ID: 32796126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth.
    Jung H; Lee DK; Choi YD; Kim JK
    Plant Sci; 2015 Jul; 236():304-12. PubMed ID: 26025543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize.
    Gaudin AC; McClymont SA; Soliman SS; Raizada MN
    BMC Genet; 2014 Feb; 15():23. PubMed ID: 24524734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.
    Park KY; Kim EY; Seo YS; Kim WT
    Plant Mol Biol; 2016 Mar; 90(4-5):517-32. PubMed ID: 26803502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice.
    Nakagawa M; Shimamoto K; Kyozuka J
    Plant J; 2002 Mar; 29(6):743-50. PubMed ID: 12148532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity.
    Ge L; Chen H; Jiang JF; Zhao Y; Xu ML; Xu YY; Tan KH; Xu ZH; Chong K
    Plant Physiol; 2004 Jul; 135(3):1502-13. PubMed ID: 15247372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of miR164b-resistant OsNAC2 improves plant architecture and grain yield in rice.
    Jiang D; Chen W; Dong J; Li J; Yang F; Wu Z; Zhou H; Wang W; Zhuang C
    J Exp Bot; 2018 Mar; 69(7):1533-1543. PubMed ID: 29365136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PIL transcription factors directly interact with SPLs and repress tillering/branching in plants.
    Zhang L; He G; Li Y; Yang Z; Liu T; Xie X; Kong X; Sun J
    New Phytol; 2022 Feb; 233(3):1414-1425. PubMed ID: 34800046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.
    Lu G; Coneva V; Casaretto JA; Ying S; Mahmood K; Liu F; Nambara E; Bi YM; Rothstein SJ
    Plant J; 2015 Sep; 83(5):913-25. PubMed ID: 26213119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of osa-miR156e expression affects rice plant architecture and strigolactones (SLs) pathway.
    Chen Z; Gao X; Zhang J
    Plant Cell Rep; 2015 May; 34(5):767-81. PubMed ID: 25604991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OsSHI1 Regulates Plant Architecture Through Modulating the Transcriptional Activity of IPA1 in Rice.
    Duan E; Wang Y; Li X; Lin Q; Zhang T; Wang Y; Zhou C; Zhang H; Jiang L; Wang J; Lei C; Zhang X; Guo X; Wang H; Wan J
    Plant Cell; 2019 May; 31(5):1026-1042. PubMed ID: 30914468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant architecture and grain yield are regulated by the novel DHHC-type zinc finger protein genes in rice (Oryza sativa L.).
    Zhou B; Lin JZ; Peng D; Yang YZ; Guo M; Tang DY; Tan X; Liu XM
    Plant Sci; 2017 Jan; 254():12-21. PubMed ID: 27964781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.