BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21912860)

  • 21. Functions for rice RFL in vegetative axillary meristem specification and outgrowth.
    Deshpande GM; Ramakrishna K; Chongloi GL; Vijayraghavan U
    J Exp Bot; 2015 May; 66(9):2773-84. PubMed ID: 25788736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions.
    Park SI; Kim YS; Kim JJ; Mok JE; Kim YH; Park HM; Kim IS; Yoon HS
    J Plant Physiol; 2017 Aug; 215():39-47. PubMed ID: 28527337
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.
    Lu Z; Yu H; Xiong G; Wang J; Jiao Y; Liu G; Jing Y; Meng X; Hu X; Qian Q; Fu X; Wang Y; Li J
    Plant Cell; 2013 Oct; 25(10):3743-59. PubMed ID: 24170127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice.
    Yin H; Gao P; Liu C; Yang J; Liu Z; Luo D
    Planta; 2013 Jan; 237(1):15-27. PubMed ID: 22956125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flowering-Related RING Protein 1 (FRRP1) Regulates Flowering Time and Yield Potential by Affecting Histone H2B Monoubiquitination in Rice (Oryza Sativa).
    Du Y; He W; Deng C; Chen X; Gou L; Zhu F; Guo W; Zhang J; Wang T
    PLoS One; 2016; 11(3):e0150458. PubMed ID: 26934377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. OsWUS promotes tiller bud growth by establishing weak apical dominance in rice.
    Xia T; Chen H; Dong S; Ma Z; Ren H; Zhu X; Fang X; Chen F
    Plant J; 2020 Dec; 104(6):1635-1647. PubMed ID: 33064890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chromatin Interacting Factor OsVIL2 Is Required for Outgrowth of Axillary Buds in Rice.
    Yoon J; Cho LH; Lee S; Pasriga R; Tun W; Yang J; Yoon H; Jeong HJ; Jeon JS; An G
    Mol Cells; 2019 Dec; 42(12):858-868. PubMed ID: 31771322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of a NAC-domain protein promotes shoot branching in rice.
    Mao C; Ding W; Wu Y; Yu J; He X; Shou H; Wu P
    New Phytol; 2007; 176(2):288-298. PubMed ID: 17888111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tillering in the sugary1 sweet corn is maintained by overriding the teosinte branched1 repressive signal.
    Kebrom TH; Brutnell TP
    Plant Signal Behav; 2015; 10(12):e1078954. PubMed ID: 26399727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. UNBRANCHED3 regulates branching by modulating cytokinin biosynthesis and signaling in maize and rice.
    Du Y; Liu L; Li M; Fang S; Shen X; Chu J; Zhang Z
    New Phytol; 2017 Apr; 214(2):721-733. PubMed ID: 28040882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice.
    Chen L; Zhao Y; Xu S; Zhang Z; Xu Y; Zhang J; Chong K
    New Phytol; 2018 Apr; 218(1):219-231. PubMed ID: 29364524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress.
    Song SY; Chen Y; Chen J; Dai XY; Zhang WH
    Planta; 2011 Aug; 234(2):331-45. PubMed ID: 21448719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants.
    Kyozuka J; Shimamoto K
    Plant Cell Physiol; 2002 Jan; 43(1):130-5. PubMed ID: 11828031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variation in the regulatory region of FZP causes increases in secondary inflorescence branching and grain yield in rice domestication.
    Huang Y; Zhao S; Fu Y; Sun H; Ma X; Tan L; Liu F; Sun X; Sun H; Gu P; Xie D; Sun C; Zhu Z
    Plant J; 2018 Nov; 96(4):716-733. PubMed ID: 30101570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential of rice tillering for sustainable food production.
    Takai T
    J Exp Bot; 2024 Feb; 75(3):708-720. PubMed ID: 37933683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa).
    Zhu QH; Upadhyaya NM; Gubler F; Helliwell CA
    BMC Plant Biol; 2009 Dec; 9():149. PubMed ID: 20017947
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Homologous expression of γ-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses.
    Choe YH; Kim YS; Kim IS; Bae MJ; Lee EJ; Kim YH; Park HM; Yoon HS
    J Plant Physiol; 2013 Apr; 170(6):610-8. PubMed ID: 23294545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions.
    Yang DH; Kwak KJ; Kim MK; Park SJ; Yang KY; Kang H
    Plant Sci; 2014 Jan; 214():106-12. PubMed ID: 24268168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation, cloning and expression of CCA1 gene in transgenic progeny plants of Japonica rice exhibiting altered morphological traits.
    Chaudhury A; Dalal AD; Sheoran NT
    PLoS One; 2019; 14(8):e0220140. PubMed ID: 31381594
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The plant architecture of rice (Oryza sativa).
    Wang Y; Li J
    Plant Mol Biol; 2005 Sep; 59(1):75-84. PubMed ID: 16217603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.