BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21913087)

  • 1. Mapping open chromatin with formaldehyde-assisted isolation of regulatory elements.
    Nammo T; Rodríguez-Seguí SA; Ferrer J
    Methods Mol Biol; 2011; 791():287-96. PubMed ID: 21913087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global Mapping of Open Chromatin Regulatory Elements by Formaldehyde-Assisted Isolation of Regulatory Elements Followed by Sequencing (FAIRE-seq).
    Bianco S; Rodrigue S; Murphy BD; Gévry N
    Methods Mol Biol; 2015; 1334():261-72. PubMed ID: 26404156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A step-by-step protocol for formaldehyde-assisted isolation of regulatory elements from Arabidopsis thaliana.
    Omidbakhshfard MA; Winck FV; Arvidsson S; Riaño-Pachón DM; Mueller-Roeber B
    J Integr Plant Biol; 2014 Jun; 56(6):527-38. PubMed ID: 24373132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A map of open chromatin in human pancreatic islets.
    Gaulton KJ; Nammo T; Pasquali L; Simon JM; Giresi PG; Fogarty MP; Panhuis TM; Mieczkowski P; Secchi A; Bosco D; Berney T; Montanya E; Mohlke KL; Lieb JD; Ferrer J
    Nat Genet; 2010 Mar; 42(3):255-9. PubMed ID: 20118932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements).
    Giresi PG; Lieb JD
    Methods; 2009 Jul; 48(3):233-9. PubMed ID: 19303047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin.
    Giresi PG; Kim J; McDaniell RM; Iyer VR; Lieb JD
    Genome Res; 2007 Jun; 17(6):877-85. PubMed ID: 17179217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formaldehyde-assisted Isolation of Regulatory Elements to Measure Chromatin Accessibility in Mammalian Cells.
    Rodríguez-Gil A; Riedlinger T; Ritter O; Saul VV; Schmitz ML
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29658938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA.
    Simon JM; Giresi PG; Davis IJ; Lieb JD
    Nat Protoc; 2012 Jan; 7(2):256-67. PubMed ID: 22262007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput cis-regulatory element discovery in the vector mosquito Aedes aegypti.
    Behura SK; Sarro J; Li P; Mysore K; Severson DW; Emrich SJ; Duman-Scheel M
    BMC Genomics; 2016 May; 17():341. PubMed ID: 27161480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) to Identify Functional Regulatory DNA in Insect Genomes.
    McKay DJ
    Methods Mol Biol; 2019; 1858():89-97. PubMed ID: 30414113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formaldehyde-assisted isolation of regulatory elements.
    Nagy PL; Price DH
    Wiley Interdiscip Rev Syst Biol Med; 2009; 1(3):400-406. PubMed ID: 20046543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detailed protocol for formaldehyde-assisted isolation of regulatory elements (FAIRE).
    Simon JM; Giresi PG; Davis IJ; Lieb JD
    Curr Protoc Mol Biol; 2013; Chapter 21():Unit21.26. PubMed ID: 23547014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assay for Transposase Accessible Chromatin (ATAC-Seq) to Chart the Open Chromatin Landscape of Human Pancreatic Islets.
    Raurell-Vila H; Ramos-Rodríguez M; Pasquali L
    Methods Mol Biol; 2018; 1766():197-208. PubMed ID: 29605854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting long-range chromatin interactions using the chromosome conformation capture sequencing (4C-seq) method.
    Gheldof N; Leleu M; Noordermeer D; Rougemont J; Reymond A
    Methods Mol Biol; 2012; 786():211-25. PubMed ID: 21938629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of functional noncoding elements by digital analysis of chromatin structure.
    Sabo PJ; Hawrylycz M; Wallace JC; Humbert R; Yu M; Shafer A; Kawamoto J; Hall R; Mack J; Dorschner MO; McArthur M; Stamatoyannopoulos JA
    Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16837-42. PubMed ID: 15550541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.
    Ackermann AM; Wang Z; Schug J; Naji A; Kaestner KH
    Mol Metab; 2016 Mar; 5(3):233-244. PubMed ID: 26977395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimized FAIRE procedure for low cell numbers in yeast.
    Segorbe D; Wilkinson D; Mizeranschi A; Hughes T; Aaløkken R; Váchová L; Palková Z; Gilfillan GD
    Yeast; 2018 Aug; 35(8):507-512. PubMed ID: 29577419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formaldehyde-assisted isolation of regulatory DNA elements from Arabidopsis leaves.
    Baum S; Reimer-Michalski EM; Jaskiewicz MR; Conrath U
    Nat Protoc; 2020 Mar; 15(3):713-733. PubMed ID: 32042178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity.
    Song L; Zhang Z; Grasfeder LL; Boyle AP; Giresi PG; Lee BK; Sheffield NC; Gräf S; Huss M; Keefe D; Liu Z; London D; McDaniell RM; Shibata Y; Showers KA; Simon JM; Vales T; Wang T; Winter D; Zhang Z; Clarke ND; Birney E; Iyer VR; Crawford GE; Lieb JD; Furey TS
    Genome Res; 2011 Oct; 21(10):1757-67. PubMed ID: 21750106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of regulatory polymorphisms: high-throughput capillary DNase I footprinting.
    Hancock M; Shephard EA
    Methods Mol Biol; 2013; 987():269-82. PubMed ID: 23475685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.