These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 21913315)

  • 1. Coaxial electrospun poly(ε-caprolactone), multiwalled carbon nanotubes, and polyacrylic acid/polyvinyl alcohol scaffold for skeletal muscle tissue engineering.
    McKeon-Fischer KD; Flagg DH; Freeman JW
    J Biomed Mater Res A; 2011 Dec; 99(3):493-9. PubMed ID: 21913315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(3,4-ethylenedioxythiophene) nanoparticle and poly(ɛ-caprolactone) electrospun scaffold characterization for skeletal muscle regeneration.
    McKeon-Fischer KD; Browe DP; Olabisi RM; Freeman JW
    J Biomed Mater Res A; 2015 Nov; 103(11):3633-41. PubMed ID: 25855940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction.
    Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW
    J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.
    Chen MC; Sun YC; Chen YH
    Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo skeletal muscle biocompatibility of composite, coaxial electrospun, and microfibrous scaffolds.
    McKeon-Fischer KD; Rossmeisl JH; Whittington AR; Freeman JW
    Tissue Eng Part A; 2014 Jul; 20(13-14):1961-70. PubMed ID: 24471815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I
    Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives.
    Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS
    Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering.
    Reddy CS; Venugopal JR; Ramakrishna S; Zussman E
    J Biomed Mater Res A; 2014 Oct; 102(10):3713-25. PubMed ID: 24288184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes.
    Holmes B; Castro NJ; Li J; Keidar M; Zhang LG
    Nanotechnology; 2013 Sep; 24(36):365102. PubMed ID: 23959974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering.
    Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering.
    Balguid A; Mol A; van Marion MH; Bank RA; Bouten CV; Baaijens FP
    Tissue Eng Part A; 2009 Feb; 15(2):437-44. PubMed ID: 18694294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering.
    Gholizadeh S; Moztarzadeh F; Haghighipour N; Ghazizadeh L; Baghbani F; Shokrgozar MA; Allahyari Z
    Int J Biol Macromol; 2017 Apr; 97():365-372. PubMed ID: 28064056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chitosan surface modified electrospun poly(ε-caprolactone)/carbon nanotube composite fibers with enhanced mechanical, cell proliferation and antibacterial properties.
    Wang S; Li Y; Zhao R; Jin T; Zhang L; Li X
    Int J Biol Macromol; 2017 Nov; 104(Pt A):708-715. PubMed ID: 28645765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrohydrodynamic 3D printing of microscale poly (ε-caprolactone) scaffolds with multi-walled carbon nanotubes.
    He J; Xu F; Dong R; Guo B; Li D
    Biofabrication; 2017 Jan; 9(1):015007. PubMed ID: 28052044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.
    Chen CH; Shyu VB; Chen JP; Lee MY
    Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study on the construction of small three-dimensional tissue engineered grafts of electrospun poly-ε-caprolactone.
    Zhu GC; Gu YQ; Geng X; Feng ZG; Zhang SW; Ye L; Wang ZG
    J Mater Sci Mater Med; 2015 Feb; 26(2):112. PubMed ID: 25665848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S
    Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly (epsilon-caprolactone) nanofibrous ring surrounding a polyvinyl alcohol hydrogel for the development of a biocompatible two-part artificial cornea.
    Bakhshandeh H; Soleimani M; Hosseini SS; Hashemi H; Shabani I; Shafiee A; Nejad AH; Erfan M; Dinarvand R; Atyabi F
    Int J Nanomedicine; 2011; 6():1509-15. PubMed ID: 21845040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.