These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21913676)

  • 1. Ultrathin single crystal diamond nanomechanical dome resonators.
    Zalalutdinov MK; Ray MP; Photiadis DM; Robinson JT; Baldwin JW; Butler JE; Feygelson TI; Pate BB; Houston BH
    Nano Lett; 2011 Oct; 11(10):4304-8. PubMed ID: 21913676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators.
    Kara V; Sohn YI; Atikian H; Yakhot V; Lončar M; Ekinci KL
    Nano Lett; 2015 Dec; 15(12):8070-6. PubMed ID: 26509332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Shape Memory Alloy-Based Nanomechanical Resonators for Ultrathin Film Elastic Properties Determination and Heavy Mass Spectrometry.
    Stachiv I; Gan L
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million.
    Tao Y; Boss JM; Moores BA; Degen CL
    Nat Commun; 2014 Apr; 5():3638. PubMed ID: 24710311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaching the Strain-Free Limit in Ultrathin Nanomechanical Resonators.
    Zhou J; Moldovan N; Stan L; Cai H; Czaplewski DA; López D
    Nano Lett; 2020 Aug; 20(8):5693-5698. PubMed ID: 32530287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diamond Nanomechanical Resonators Protected by a Phononic Band Gap.
    Li X; Lekavicius I; Wang H
    Nano Lett; 2022 Dec; 22(24):10163-10166. PubMed ID: 36515668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing.
    Imboden M; Williams OA; Mohanty P
    Nano Lett; 2013 Sep; 13(9):4014-9. PubMed ID: 23953003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong gate coupling of high-Q nanomechanical resonators.
    Sulkko J; Sillanpää MA; Häkkinen P; Lechner L; Helle M; Fefferman A; Parpia J; Hakonen PJ
    Nano Lett; 2010 Dec; 10(12):4884-9. PubMed ID: 21053964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inkjet-Printed High-Q Nanocrystalline Diamond Resonators.
    Sartori AF; Belardinelli P; Dolleman RJ; Steeneken PG; Ghatkesar MK; Buijnsters JG
    Small; 2019 Jan; 15(4):e1803774. PubMed ID: 30566284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High, size-dependent quality factor in an array of graphene mechanical resonators.
    Barton RA; Ilic B; van der Zande AM; Whitney WS; McEuen PL; Parpia JM; Craighead HG
    Nano Lett; 2011 Mar; 11(3):1232-6. PubMed ID: 21294522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomechanical Crystalline AlN Resonators with High Quality Factors for Quantum Optoelectromechanics.
    Ciers A; Jung A; Ciers J; Nindito LR; Pfeifer H; Dadgar A; Strittmatter A; Wieczorek W
    Adv Mater; 2024 Nov; 36(44):e2403155. PubMed ID: 39285850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low propagation loss in a one-port SAW resonator fabricated on single-crystal diamond for super-high-frequency applications.
    Fujii S; Odawara T; Yamada H; Omori T; Hashimoto KY; Torii H; Umezawa H; Shikata S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):986-92. PubMed ID: 23661133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on Fabrication of Phononic Crystal Soft-Supported Graphene Resonator.
    Zheng X; Liu Y; Zhen J; Qiu J; Liu G
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.
    Hamoumi M; Allain PE; Hease W; Gil-Santos E; Morgenroth L; Gérard B; Lemaître A; Leo G; Favero I
    Phys Rev Lett; 2018 Jun; 120(22):223601. PubMed ID: 29906180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Deep-Defects Excitation on Mechanical Energy Dissipation of Single-Crystal Diamond.
    Sun H; Sang L; Wu H; Zhang Z; Teraji T; Li TF; You JQ; Toda M; Koizumi S; Liao M
    Phys Rev Lett; 2020 Nov; 125(20):206802. PubMed ID: 33258634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the tradeoff between device scale and surface nonidealities for an optimized quality factor at room temperature in 2D MoS
    Zhang P; Jia Y; Yuan S; Xie M; Liu Z; Jia H; Yang R
    Microsyst Nanoeng; 2024 Sep; 10(1):140. PubMed ID: 39327417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexagonal boron nitride nanomechanical resonators with spatially visualized motion.
    Zheng XQ; Lee J; Feng PX
    Microsyst Nanoeng; 2017; 3():17038. PubMed ID: 31057874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Detection of Akhiezer Damping in a Silicon MEMS Resonator.
    Rodriguez J; Chandorkar SA; Watson CA; Glaze GM; Ahn CH; Ng EJ; Yang Y; Kenny TW
    Sci Rep; 2019 Feb; 9(1):2244. PubMed ID: 30783192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diamond nanothread based resonators: ultrahigh sensitivity and low dissipation.
    Duan K; Li Y; Li L; Hu Y; Wang X
    Nanoscale; 2018 May; 10(17):8058-8065. PubMed ID: 29671436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass Spectrometry of Heavy Analytes and Large Biological Aggregates by Monitoring Changes in the Quality Factor of Nanomechanical Resonators in Air.
    Stachiv I; Gan L; Kuo CY; Šittner P; Ševeček O
    ACS Sens; 2020 Jul; 5(7):2128-2135. PubMed ID: 32551518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.