These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 21913698)

  • 1. Total synthesis of polyprenyl N-glycolyl lipid II as a mycobacterial transglycosylase substrate.
    Meng FC; Chen KT; Huang LY; Shih HW; Chang HH; Nien FY; Liang PH; Cheng TJ; Wong CH; Cheng WC
    Org Lett; 2011 Oct; 13(19):5306-9. PubMed ID: 21913698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid preparation of mycobacterium N-glycolyl Lipid I and Lipid II derivatives: a biocatalytic approach.
    Chen KT; Kuan YC; Fu WC; Liang PH; Cheng TJ; Wong CH; Cheng WC
    Chemistry; 2013 Jan; 19(3):834-8. PubMed ID: 23229320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and evaluation of a new fluorescent transglycosylase substrate: lipid II-based molecule possessing a dansyl-C20 polyprenyl moiety.
    Liu CY; Guo CW; Chang YF; Wang JT; Shih HW; Hsu YF; Chen CW; Chen SK; Wang YC; Cheng TJ; Ma C; Wong CH; Fang JM; Cheng WC
    Org Lett; 2010 Apr; 12(7):1608-11. PubMed ID: 20187630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of 1-C-Glycoside-Linked Lipid II Analogues Toward Bacterial Transglycosylase Inhibition.
    Lin CK; Chen KT; Hu CM; Yun WY; Cheng WC
    Chemistry; 2015 May; 21(20):7511-9. PubMed ID: 25820317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new synthetic approach toward bacterial transglycosylase substrates, Lipid II and Lipid IV.
    Shih HW; Chen KT; Cheng TJ; Wong CH; Cheng WC
    Org Lett; 2011 Sep; 13(17):4600-3. PubMed ID: 21797279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances toward the inhibition of mAG and LAM synthesis in Mycobacterium tuberculosis.
    Umesiri FE; Sanki AK; Boucau J; Ronning DR; Sucheck SJ
    Med Res Rev; 2010 Mar; 30(2):290-326. PubMed ID: 20099253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of lipid-linked arabinofuranose donors for glycosyltransferases.
    Kraft MB; Martinez Farias MA; Kiessling LL
    J Org Chem; 2013 Mar; 78(5):2128-33. PubMed ID: 23373821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis.
    Mohanty D; Sankaranarayanan R; Gokhale RS
    Tuberculosis (Edinb); 2011 Sep; 91(5):448-55. PubMed ID: 21601529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, expression and characterization of Mycobacterium tuberculosis lipoprotein LprF.
    Brülle JK; Grau T; Tschumi A; Auchli Y; Burri R; Polsfuss S; Keller PM; Hunziker P; Sander P
    Biochem Biophys Res Commun; 2010 Jan; 391(1):679-84. PubMed ID: 19944079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosyl transferase activity of the Escherichia coli penicillin-binding protein 1b: specificity profile for the substrate.
    Fraipont C; Sapunaric F; Zervosen A; Auger G; Devreese B; Lioux T; Blanot D; Mengin-Lecreulx D; Herdewijn P; Van Beeumen J; Frère JM; Nguyen-Distèche M
    Biochemistry; 2006 Mar; 45(12):4007-13. PubMed ID: 16548528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acyl structures of mycobacterium tuberculosis sulfoglycolipid govern T cell response.
    Guiard J; Collmann A; Garcia-Alles LF; Mourey L; Brando T; Mori L; Gilleron M; Prandi J; De Libero G; Puzo G
    J Immunol; 2009 Jun; 182(11):7030-7. PubMed ID: 19454700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities.
    Jackson M; Stadthagen G; Gicquel B
    Tuberculosis (Edinb); 2007 Mar; 87(2):78-86. PubMed ID: 17030019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mycobacterial sulfolipid shows a virulence by inhibiting cord factor induced granuloma formation and TNF-alpha release.
    Okamoto Y; Fujita Y; Naka T; Hirai M; Tomiyasu I; Yano I
    Microb Pathog; 2006 Jun; 40(6):245-53. PubMed ID: 16626929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison.
    Ehlers S
    Eur J Cell Biol; 2010 Jan; 89(1):95-101. PubMed ID: 19892432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total synthesis of phosphatidylinositol mannosides of Mycobacterium tuberculosis.
    Liu X; Stocker BL; Seeberger PH
    J Am Chem Soc; 2006 Mar; 128(11):3638-48. PubMed ID: 16536536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic arabinomannan glycolipids and their effects on growth and motility of the Mycobacterium smegmatis.
    Naresh K; Bharati BK; Avaji PG; Jayaraman N; Chatterji D
    Org Biomol Chem; 2010 Feb; 8(3):592-9. PubMed ID: 20090975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis of D-arabinose in mycobacteria - a novel bacterial pathway with implications for antimycobacterial therapy.
    Wolucka BA
    FEBS J; 2008 Jun; 275(11):2691-711. PubMed ID: 18422659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mycobacterial tests].
    Takashima T; Higuchi T
    Kekkaku; 2008 Jan; 83(1):43-59. PubMed ID: 18283915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different glycosyltransferases are involved in lipid glycosylation and protein N-glycosylation in the halophilic archaeon Haloferax volcanii.
    Naparstek S; Vinagradov E; Eichler J
    Arch Microbiol; 2010 Jul; 192(7):581-4. PubMed ID: 20458469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.