These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21913710)

  • 1. Enhanced electrocatalytic reduction of CO2 with ternary Ni-Fe4S4 and Co-Fe4S4-based biomimetic chalcogels.
    Yuhas BD; Prasittichai C; Hupp JT; Kanatzidis MG
    J Am Chem Soc; 2011 Oct; 133(40):15854-7. PubMed ID: 21913710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photochemical hydrogen evolution from Fe4S4-based biomimetic chalcogels containing M2+ (M = Pt, Zn, Co, Ni, Sn) centers.
    Shim Y; Young RM; Douvalis AP; Dyar SM; Yuhas BD; Bakas T; Wasielewski MR; Kanatzidis MG
    J Am Chem Soc; 2014 Sep; 136(38):13371-80. PubMed ID: 25162793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable biomimetic chalcogels with Fe4S4 cores and [Sn(n)S(2n+2)](4-)(n = 1, 2, 4) building blocks for solar fuel catalysis.
    Shim Y; Yuhas BD; Dyar SM; Smeigh AL; Douvalis AP; Wasielewski MR; Kanatzidis MG
    J Am Chem Soc; 2013 Feb; 135(6):2330-7. PubMed ID: 23368697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalytic hydrogen evolution from FeMoS-based biomimetic chalcogels.
    Yuhas BD; Smeigh AL; Douvalis AP; Wasielewski MR; Kanatzidis MG
    J Am Chem Soc; 2012 Jun; 134(25):10353-6. PubMed ID: 22662744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts.
    Schneider J; Jia H; Muckerman JT; Fujita E
    Chem Soc Rev; 2012 Mar; 41(6):2036-51. PubMed ID: 22167246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of the H-cluster framework of iron-only hydrogenase.
    Tard C; Liu X; Ibrahim SK; Bruschi M; De Gioia L; Davies SC; Yang X; Wang LS; Sawers G; Pickett CJ
    Nature; 2005 Feb; 433(7026):610-3. PubMed ID: 15703741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-H bond activation of decamethylcobaltocene mediated by a nitrogenase Fe(8)S(7) P-cluster model.
    Ohki Y; Murata A; Imada M; Tatsumi K
    Inorg Chem; 2009 May; 48(10):4271-3. PubMed ID: 19341307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.
    Wang K; Li X; Ji S; Huang B; Li C
    ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic chemistry: making a natural fuel cell.
    Darensbourg MY
    Nature; 2005 Feb; 433(7026):589-91. PubMed ID: 15703733
    [No Abstract]   [Full Text] [Related]  

  • 10. Density functional and reduction potential calculations of Fe4S4 clusters.
    Torres RA; Lovell T; Noodleman L; Case DA
    J Am Chem Soc; 2003 Feb; 125(7):1923-36. PubMed ID: 12580620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur oxygenates of biomimetics of the diiron subsite of the [FeFe]-hydrogenase active site: properties and oxygen damage repair possibilities.
    Liu T; Li B; Singleton ML; Hall MB; Darensbourg MY
    J Am Chem Soc; 2009 Jun; 131(23):8296-307. PubMed ID: 19507910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials.
    Laycock CJ; Staniforth JZ; Ormerod RM
    Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of [Fe
    Lee CC; Stiebritz MT; Hu Y
    Acc Chem Res; 2019 May; 52(5):1168-1176. PubMed ID: 30977994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evaluation of effect of the peptide structure on energetics of reduction-oxidation reactions of proteins containing Fe4S4 clusters in computer experiments].
    Ivaĭkina AG; Balabaev NK; Shaĭtan KV
    Biofizika; 2001; 46(4):589-94. PubMed ID: 11558366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-protein complex formation affects the Ni-Fe and Fe-S centers in the H2-sensing regulatory hydrogenase from Ralstonia eutropha H16.
    Löscher S; Gebler A; Stein M; Sanganas O; Buhrke T; Zebger I; Dau H; Friedrich B; Lenz O; Haumann M
    Chemphyschem; 2010 Apr; 11(6):1297-306. PubMed ID: 20340124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes.
    Mejia-Rodriguez R; Chong D; Reibenspies JH; Soriaga MP; Darensbourg MY
    J Am Chem Soc; 2004 Sep; 126(38):12004-14. PubMed ID: 15382935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Nickel Complexes Supported by an Iron Metalloligand.
    Prat JR; Gaggioli CA; Cammarota RC; Bill E; Gagliardi L; Lu CC
    Inorg Chem; 2020 Oct; 59(19):14251-14262. PubMed ID: 32954721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases.
    Wombwell C; Reisner E
    Dalton Trans; 2014 Mar; 43(11):4483-93. PubMed ID: 24366040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts.
    Chaliha S; Bhattacharyya KG
    J Hazard Mater; 2008 Feb; 150(3):728-36. PubMed ID: 17574332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational prediction of pentadentate iron and cobalt complexes as a mimic of mono-iron hydrogenase for the hydrogenation of carbon dioxide to methanol.
    Wang W; Qiu B; Yang X
    Dalton Trans; 2019 Jun; 48(23):8034-8038. PubMed ID: 31074752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.