BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 21914566)

  • 21. Microwave ablation at 10.0 GHz achieves comparable ablation zones to 1.9 GHz in ex vivo bovine liver.
    Luyen H; Gao F; Hagness SC; Behdad N
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1702-10. PubMed ID: 24845280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local complex permittivity measurements of porcine skin tissue in the frequency range from 1 GHz to 15 GHz by evanescent microscopy.
    Kleismit RA; Kozlowski G; Foy BD; Hull BE; Kazimierczuk M
    Phys Med Biol; 2009 Feb; 54(3):699-713. PubMed ID: 19131676
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.
    Ibitoye AZ; Nwoye EO; Aweda AM; Oremosu AA; Anunobi CC; Akanmu NO
    Int J Hyperthermia; 2016 Dec; 32(8):923-930. PubMed ID: 27431435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histology-Validated Dielectric Characterisation of Lung Carcinoma Tissue for Microwave Thermal Ablation Applications.
    Farina L; Ruvio G; Shatwan R; Shalaby A; O'Halloran M; White A; Soo A; Breen D; Lowery A; Quinn AM
    Cancers (Basel); 2023 Jul; 15(14):. PubMed ID: 37509399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of Cavity-Backed Bow-Tie Antenna with Matching Layer for Human Body Application.
    Jeong J; Park K; Lee C
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries.
    Lazebnik M; Popovic D; McCartney L; Watkins CB; Lindstrom MJ; Harter J; Sewall S; Ogilvie T; Magliocco A; Breslin TM; Temple W; Mew D; Booske JH; Okoniewski M; Hagness SC
    Phys Med Biol; 2007 Oct; 52(20):6093-115. PubMed ID: 17921574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of Cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances.
    Ward LC; Essex T; Cornish BH
    Physiol Meas; 2006 Sep; 27(9):839-50. PubMed ID: 16868350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct reconstruction of tissue parameters from differential multifrequency EIT in vivo.
    Mayer M; Brunner P; Merwa R; Smolle-Jüttner FM; Maier A; Scharfetter H
    Physiol Meas; 2006 May; 27(5):S93-101. PubMed ID: 16636423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature-dependent dielectric properties of liver tissue measured during thermal ablation: toward an improved numerical model.
    Brace CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():230-3. PubMed ID: 19162635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 915-MHz antenna for microwave thermal ablation treatment: physical design, computer modeling and experimental measurement.
    Pisa S; Cavagnaro M; Bernardi P; Lin JC
    IEEE Trans Biomed Eng; 2001 May; 48(5):599-601. PubMed ID: 11341534
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of dielectric permittivities on skin heating due to millimeter wave exposure.
    Kanezaki A; Hirata A; Watanabe S; Shirai H
    Biomed Eng Online; 2009 Sep; 8():20. PubMed ID: 19775447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational modeling of 915 MHz microwave ablation: Comparative assessment of temperature-dependent tissue dielectric models.
    Deshazer G; Hagmann M; Merck D; Sebek J; Moore KB; Prakash P
    Med Phys; 2017 Sep; 44(9):4859-4868. PubMed ID: 28543540
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-dependent dielectric properties of human uterine fibroids over microwave frequencies.
    Zia G; Sebek J; Prakash P
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34534970
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mathematical modeling of impedance controlled radiofrequency tumor ablation and ex-vivo validation.
    Haemmerich D
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1605-8. PubMed ID: 21096131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dielectric properties of blood: an investigation of temperature dependence.
    Jaspard F; Nadi M
    Physiol Meas; 2002 Aug; 23(3):547-54. PubMed ID: 12214762
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved circuit model of open-ended coaxial probe for measurement of the biological tissue dielectric properties between megahertz and gigahertz.
    Zhang L; Shi X; You F; Liu P; Dong X
    Physiol Meas; 2013 Oct; 34(10):N83-96. PubMed ID: 24021242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of Artificial Neural Networks for Accurate Determination of the Complex Permittivity of Biological Tissue.
    Bonello J; Demarco A; Farhat I; Farrugia L; Sammut CV
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32824718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex Permittivity of Ex-Vivo Human, Bovine and Porcine Brain Tissues in the Microwave Frequency Range.
    Matković A; Kordić A; Jakovčević A; Šarolić A
    Diagnostics (Basel); 2022 Oct; 12(11):. PubMed ID: 36359425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Pilot Study of the Impact of Microwave Ablation on the Dielectric Properties of Breast Tissue.
    Neira LM; Mays RO; Sawicki JF; Schulman A; Harter J; Wilke LG; Behdad N; Van Veen BD; Hagness SC
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.