These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21914724)

  • 1. Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position.
    Shen M; Mattox W
    Nucleic Acids Res; 2012 Jan; 40(1):428-37. PubMed ID: 21914724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The doublesex splicing enhancer components Tra2 and Rbp1 also repress splicing through an intronic silencer.
    Qi J; Su S; Mattox W
    Mol Cell Biol; 2007 Jan; 27(2):699-708. PubMed ID: 17101798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Half pint/Puf68 is required for negative regulation of splicing by the SR splicing factor Transformer2.
    Wang S; Wagner EJ; Mattox W
    RNA Biol; 2013 Aug; 10(8):1396-406. PubMed ID: 23880637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systematic analysis of intronic sequences downstream of 5' splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation.
    Aznarez I; Barash Y; Shai O; He D; Zielenski J; Tsui LC; Parkinson J; Frey BJ; Rommens JM; Blencowe BJ
    Genome Res; 2008 Aug; 18(8):1247-58. PubMed ID: 18456862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer.
    Lynch KW; Maniatis T
    Genes Dev; 1996 Aug; 10(16):2089-101. PubMed ID: 8769651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration dependent selection of targets by an SR splicing regulator results in tissue-specific RNA processing.
    Qi J; Su S; McGuffin ME; Mattox W
    Nucleic Acids Res; 2006; 34(21):6256-63. PubMed ID: 17098939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A.
    Gallego ME; Gattoni R; Stévenin J; Marie J; Expert-Bezançon A
    EMBO J; 1997 Apr; 16(7):1772-84. PubMed ID: 9130721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo analysis of the functional domains of the Drosophila splicing regulator RBP1.
    Heinrichs V; Baker BS
    Proc Natl Acad Sci U S A; 1997 Jan; 94(1):115-20. PubMed ID: 8990170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms.
    Erkelenz S; Mueller WF; Evans MS; Busch A; Schöneweis K; Hertel KJ; Schaal H
    RNA; 2013 Jan; 19(1):96-102. PubMed ID: 23175589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of SRp20 exon 4 splicing.
    Jumaa H; Nielsen PJ
    Biochim Biophys Acta; 2000 Nov; 1494(1-2):137-43. PubMed ID: 11072076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The splicing regulators Tra and Tra2 are unusually potent activators of pre-mRNA splicing.
    Sciabica KS; Hertel KJ
    Nucleic Acids Res; 2006; 34(22):6612-20. PubMed ID: 17135210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repression of prespliceosome complex formation at two distinct steps by Fox-1/Fox-2 proteins.
    Zhou HL; Lou H
    Mol Cell Biol; 2008 Sep; 28(17):5507-16. PubMed ID: 18573872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis reveals SR protein cooperation and competition in regulated splicing.
    Pandit S; Zhou Y; Shiue L; Coutinho-Mansfield G; Li H; Qiu J; Huang J; Yeo GW; Ares M; Fu XD
    Mol Cell; 2013 Apr; 50(2):223-35. PubMed ID: 23562324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes.
    Wang J; Smith PJ; Krainer AR; Zhang MQ
    Nucleic Acids Res; 2005; 33(16):5053-62. PubMed ID: 16147989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct repression of splicing by transformer-2.
    Chandler DS; Qi J; Mattox W
    Mol Cell Biol; 2003 Aug; 23(15):5174-85. PubMed ID: 12861004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding sites for Rev and ASF/SF2 map to a 55-nucleotide purine-rich exonic element in equine infectious anemia virus RNA.
    Chung H ; Derse D
    J Biol Chem; 2001 Jun; 276(22):18960-7. PubMed ID: 11278454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart.
    Ashiya M; Grabowski PJ
    RNA; 1997 Sep; 3(9):996-1015. PubMed ID: 9292499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing.
    Wu JY; Maniatis T
    Cell; 1993 Dec; 75(6):1061-70. PubMed ID: 8261509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An exonic splicing silencer is involved in the regulated splicing of glucose 6-phosphate dehydrogenase mRNA.
    Szeszel-Fedorowicz W; Talukdar I; Griffith BN; Walsh CM; Salati LM
    J Biol Chem; 2006 Nov; 281(45):34146-58. PubMed ID: 16980303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the selective activation of alternatively used splice acceptors by the human immunodeficiency virus type-1 bidirectional splicing enhancer.
    Asang C; Hauber I; Schaal H
    Nucleic Acids Res; 2008 Mar; 36(5):1450-63. PubMed ID: 18203748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.