BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21914883)

  • 1. Complete genomic sequence of the equol-producing bacterium Eggerthella sp. strain YY7918, isolated from adult human intestine.
    Yokoyama S; Oshima K; Nomura I; Hattori M; Suzuki T
    J Bacteriol; 2011 Oct; 193(19):5570-1. PubMed ID: 21914883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of a novel equol-producing bacterium from human feces.
    Yokoyama S; Suzuki T
    Biosci Biotechnol Biochem; 2008 Oct; 72(10):2660-6. PubMed ID: 18838805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine.
    Minamida K; Tanaka M; Abe A; Sone T; Tomita F; Hara H; Asano K
    J Biosci Bioeng; 2006 Sep; 102(3):247-50. PubMed ID: 17046543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria.
    Wang XL; Kim HJ; Kang SI; Kim SI; Hur HG
    Arch Microbiol; 2007 Feb; 187(2):155-60. PubMed ID: 17109177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens.
    Schröder C; Matthies A; Engst W; Blaut M; Braune A
    Appl Environ Microbiol; 2013 Jun; 79(11):3494-502. PubMed ID: 23542626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counts of Slackia sp. strain NATTS in intestinal flora are correlated to serum concentrations of equol both in prostate cancer cases and controls in Japanese men.
    Sugiyama Y; Nagata Y; Fukuta F; Takayanagi A; Masumori N; Tsukamoto T; Akasaka H; Ohnishi H; Saito S; Miura T; Moriyama K; Tsuji H; Akaza H; Mori M
    Asian Pac J Cancer Prev; 2014; 15(6):2693-7. PubMed ID: 24761887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Daidzein reductase of Eggerthella sp. YY7918, its octameric subunit structure containing FMN/FAD/4Fe-4S, and its enantioselective production of R-dihydroisoflavones.
    Kawada Y; Goshima T; Sawamura R; Yokoyama SI; Yanase E; Niwa T; Ebihara A; Inagaki M; Yamaguchi K; Kuwata K; Kato Y; Sakurada O; Suzuki T
    J Biosci Bioeng; 2018 Sep; 126(3):301-309. PubMed ID: 29699942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slackia equolifaciens sp. nov., a human intestinal bacterium capable of producing equol.
    Jin JS; Kitahara M; Sakamoto M; Hattori M; Benno Y
    Int J Syst Evol Microbiol; 2010 Aug; 60(Pt 8):1721-1724. PubMed ID: 19734283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of Soy Isoflavones by Intestinal Bacteria: Genome Analysis of an
    Vázquez L; Flórez AB; Redruello B; Mayo B
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32586036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete genomic sequence of the O-desmethylangolensin-producing bacterium Clostridium rRNA cluster XIVa strain SY8519, isolated from adult human intestine.
    Yokoyama S; Oshima K; Nomura I; Hattori M; Suzuki T
    J Bacteriol; 2011 Oct; 193(19):5568-9. PubMed ID: 21914882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium.
    Wang XL; Hur HG; Lee JH; Kim KT; Kim SI
    Appl Environ Microbiol; 2005 Jan; 71(1):214-9. PubMed ID: 15640190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of the equol-producing bacterium Slackia sp. strain NATTS.
    Tsuji H; Moriyama K; Nomoto K; Miyanaga N; Akaza H
    Arch Microbiol; 2010 Apr; 192(4):279-87. PubMed ID: 20237913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria.
    Jin JS; Nishihata T; Kakiuchi N; Hattori M
    Biol Pharm Bull; 2008 Aug; 31(8):1621-5. PubMed ID: 18670101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion.
    Matthies A; Blaut M; Braune A
    Appl Environ Microbiol; 2009 Mar; 75(6):1740-4. PubMed ID: 19139227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Function of a Novel Bacterium,
    Gao X; Mu P; Zhu X; Chen X; Tang S; Wu Y; Miao X; Wang X; Wen J; Deng Y
    Toxins (Basel); 2020 Jan; 12(2):. PubMed ID: 31991913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of an enzyme system for daidzein-to-equol conversion in Slackia sp. strain NATTS.
    Tsuji H; Moriyama K; Nomoto K; Akaza H
    Appl Environ Microbiol; 2012 Feb; 78(4):1228-36. PubMed ID: 22179235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of an equol-producing bacterium isolated from human faeces on isoflavone and lignan metabolism in mice.
    Tamura M; Hori S; Nakagawa H; Yamauchi S; Sugahara T
    J Sci Food Agric; 2016 Jul; 96(9):3126-32. PubMed ID: 26455424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and identification of a human intestinal bacterium capable of daidzein conversion.
    Guo Y; Zhao L; Fang X; Zhong Q; Liang H; Liang W; Wang L
    FEMS Microbiol Lett; 2021 May; 368(8):. PubMed ID: 33930123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereospecific biotransformation of dihydrodaidzein into (3S)-equol by the human intestinal bacterium Eggerthella strain Julong 732.
    Kim M; Kim SI; Han J; Wang XL; Song DG; Kim SU
    Appl Environ Microbiol; 2009 May; 75(10):3062-8. PubMed ID: 19304836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The production of S-equol from daidzein is associated with a cluster of three genes in Eggerthella sp. YY7918.
    Kawada Y; Yokoyama S; Yanase E; Niwa T; Suzuki T
    Biosci Microbiota Food Health; 2016; 35(3):113-21. PubMed ID: 27508112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.