BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 21915136)

  • 1. Mechanisms of glutamate efflux at the blood-brain barrier: involvement of glial cells.
    Cohen-Kashi-Malina K; Cooper I; Teichberg VI
    J Cereb Blood Flow Metab; 2012 Jan; 32(1):177-89. PubMed ID: 21915136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The blood-brain barrier and glutamate.
    Hawkins RA
    Am J Clin Nutr; 2009 Sep; 90(3):867S-874S. PubMed ID: 19571220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the L-glutamate clearance pathways across the blood-brain barrier and the effect of astrocytes in an in vitro blood-brain barrier model.
    Helms HC; Aldana BI; Groth S; Jensen MM; Waagepetersen HS; Nielsen CU; Brodin B
    J Cereb Blood Flow Metab; 2017 Dec; 37(12):3744-3758. PubMed ID: 28145808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro evidence for the brain glutamate efflux hypothesis: brain endothelial cells cocultured with astrocytes display a polarized brain-to-blood transport of glutamate.
    Helms HC; Madelung R; Waagepetersen HS; Nielsen CU; Brodin B
    Glia; 2012 May; 60(6):882-93. PubMed ID: 22392649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closing the gap between the in-vivo and in-vitro blood-brain barrier tightness.
    Cohen-Kashi Malina K; Cooper I; Teichberg VI
    Brain Res; 2009 Aug; 1284():12-21. PubMed ID: 19501061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate efflux at the blood-brain barrier: cellular mechanisms and potential clinical relevance.
    Cederberg HH; Uhd NC; Brodin B
    Arch Med Res; 2014 Nov; 45(8):639-45. PubMed ID: 25446623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific AHNAK expression in brain endothelial cells with barrier properties.
    Gentil BJ; Benaud C; Delphin C; Remy C; Berezowski V; Cecchelli R; Feraud O; Vittet D; Baudier J
    J Cell Physiol; 2005 May; 203(2):362-71. PubMed ID: 15493012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate Transporters in the Blood-Brain Barrier.
    Helms HCC; Nielsen CU; Waagepetersen HS; Brodin B
    Adv Neurobiol; 2017; 16():297-314. PubMed ID: 28828617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood-brain barrier.
    Berezowski V; Landry C; Dehouck MP; Cecchelli R; Fenart L
    Brain Res; 2004 Aug; 1018(1):1-9. PubMed ID: 15262198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of blood-brain barrier properties in cultured brain capillary endothelial cells: comparison between primary glial cells and C6 cell line.
    Boveri M; Berezowski V; Price A; Slupek S; Lenfant AM; Benaud C; Hartung T; Cecchelli R; Prieto P; Dehouck MP
    Glia; 2005 Aug; 51(3):187-98. PubMed ID: 15800928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies.
    Teichberg VI; Cohen-Kashi-Malina K; Cooper I; Zlotnik A
    Neuroscience; 2009 Jan; 158(1):301-8. PubMed ID: 18423998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood-brain barrier produces significant efflux of L-aspartic acid but not D-aspartic acid: in vivo evidence using the brain efflux index method.
    Hosoya K; Sugawara M; Asaba H; Terasaki T
    J Neurochem; 1999 Sep; 73(3):1206-11. PubMed ID: 10461913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Membrane Transporters and Their Regulatory Mechanisms at the Brain and Retinal Barriers to Establish Therapies for Refractory Central Nervous System Diseases].
    Akanuma SI
    Yakugaku Zasshi; 2020; 140(10):1235-1242. PubMed ID: 32999202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transporter-mediated L-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells.
    Akanuma S; Sakurai T; Tachikawa M; Kubo Y; Hosoya K
    Fluids Barriers CNS; 2015 Apr; 12():11. PubMed ID: 25925580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes.
    Thomsen LB; Burkhart A; Moos T
    PLoS One; 2015; 10(8):e0134765. PubMed ID: 26241648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The blood-brain barrier studied in vitro across species.
    Thomsen MS; Humle N; Hede E; Moos T; Burkhart A; Thomsen LB
    PLoS One; 2021; 16(3):e0236770. PubMed ID: 33711041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of glutamate and other amino acids at the blood-brain barrier.
    Smith QR
    J Nutr; 2000 Apr; 130(4S Suppl):1016S-22S. PubMed ID: 10736373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelin-1 reduces p-glycoprotein transport activity in an in vitro model of human adult blood-brain barrier.
    Hembury A; Mabondzo A
    Cell Mol Neurobiol; 2008 Nov; 28(7):915-21. PubMed ID: 18379872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glial transporters for glutamate, glycine and GABA I. Glutamate transporters.
    Gadea A; López-Colomé AM
    J Neurosci Res; 2001 Mar; 63(6):453-60. PubMed ID: 11241580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Physiological function of blood-brain barrier transporters as the CNS supporting and protecting system].
    Ohtsuki S
    Yakugaku Zasshi; 2004 Nov; 124(11):791-802. PubMed ID: 15516806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.