BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21915254)

  • 1. Feigenbaum graphs: a complex network perspective of chaos.
    Luque B; Lacasa L; Ballesteros FJ; Robledo A
    PLoS One; 2011; 6(9):e22411. PubMed ID: 21915254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical properties of horizontal visibility graphs in the Feigenbaum scenario.
    Luque B; Lacasa L; Ballesteros FJ; Robledo A
    Chaos; 2012 Mar; 22(1):013109. PubMed ID: 22462985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horizontal visibility graphs generated by type-I intermittency.
    Núñez ÁM; Luque B; Lacasa L; Gómez JP; Robledo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052801. PubMed ID: 23767578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonextensive Pesin identity: exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map.
    Baldovin F; Robledo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):045202. PubMed ID: 15169059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiperiodic graphs at the onset of chaos.
    Luque B; Cordero-Gracia M; Gómez M; Robledo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062918. PubMed ID: 24483542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approximate entropy of network parameters.
    West J; Lacasa L; Severini S; Teschendorff A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046111. PubMed ID: 22680542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. q-deformed statistical-mechanical property in the dynamics of trajectories en route to the Feigenbaum attractor.
    Robledo A; Moyano LG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036213. PubMed ID: 18517491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Description of stochastic and chaotic series using visibility graphs.
    Lacasa L; Toral R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036120. PubMed ID: 21230152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics.
    Baldovin F; Robledo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):045104. PubMed ID: 12443245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying chaos for ecological stoichiometry.
    Duarte J; Januário C; Martins N; Sardanyés J
    Chaos; 2010 Sep; 20(3):033105. PubMed ID: 20887045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horizontal visibility graphs: exact results for random time series.
    Luque B; Lacasa L; Ballesteros F; Luque J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046103. PubMed ID: 19905386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core motifs predict dynamic attractors in combinatorial threshold-linear networks.
    Parmelee C; Moore S; Morrison K; Curto C
    PLoS One; 2022; 17(3):e0264456. PubMed ID: 35245322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological properties of the limited penetrable horizontal visibility graph family.
    Wang M; Vilela ALM; Du R; Zhao L; Dong G; Tian L; Stanley HE
    Phys Rev E; 2018 May; 97(5-1):052117. PubMed ID: 29906941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time reversibility from visibility graphs of nonstationary processes.
    Lacasa L; Flanagan R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022817. PubMed ID: 26382464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Logistic map trajectory distributions: Renormalization-group, entropy, and criticality at the transition to chaos.
    Diaz-Ruelas A; Baldovin F; Robledo A
    Chaos; 2021 Mar; 31(3):033112. PubMed ID: 33810710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical framework for recurrence network analysis of time series.
    Donges JF; Heitzig J; Donner RV; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046105. PubMed ID: 22680536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How, Why and When Tsallis Statistical Mechanics Provides Precise Descriptions of Natural Phenomena.
    Robledo A; Velarde C
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting chaos for infinite dimensional dynamical systems: the Kuramoto-Sivashinsky equation, a case study.
    Smyrlis YS; Papageorgiou DT
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11129-32. PubMed ID: 11607246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The identification of critical fluctuations and phase transitions in short term and coarse-grained time series-a method for the real-time monitoring of human change processes.
    Schiepek G; Strunk G
    Biol Cybern; 2010 Mar; 102(3):197-207. PubMed ID: 20084517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.