BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21915372)

  • 1. A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology.
    Taher H; Al-Zuhair S; Al-Marzouqi AH; Haik Y; Farid MM
    Enzyme Res; 2011; 2011():468292. PubMed ID: 21915372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in direct transesterification of algal oils from wet biomass.
    Park JY; Park MS; Lee YC; Yang JW
    Bioresour Technol; 2015 May; 184():267-275. PubMed ID: 25466997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of supercritical carbon dioxide on the enzymatic production of biodiesel from waste animal fat using immobilized Candida antarctica lipase B variant.
    Pollardo AA; Lee HS; Lee D; Kim S; Kim J
    BMC Biotechnol; 2017 Sep; 17(1):70. PubMed ID: 28888230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Exploitation and utilization of rich lipids-microalgae, as new lipids feedstock for biodiesel production--a review].
    Song D; Hou L; Shi D
    Sheng Wu Gong Cheng Xue Bao; 2008 Mar; 24(3):341-8. PubMed ID: 18589806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst.
    Tran DT; Chen CL; Chang JS
    Bioresour Technol; 2013 May; 135():213-21. PubMed ID: 23131310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.
    Chen CL; Huang CC; Ho KC; Hsiao PX; Wu MS; Chang JS
    Bioresour Technol; 2015 Oct; 194():179-86. PubMed ID: 26196418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiesel Production from Citrillus colocynthis Oil Using Enzymatic Based Catalytic Reaction and Characterization Studies.
    Nehdi IA; Sbihi HM; Blidi LE; Rashid U; Tan CP; Al-Resayes SI
    Protein Pept Lett; 2018; 25(2):164-170. PubMed ID: 28240158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies.
    Abdul Hakim Shaah M; Hossain MS; Salem Allafi FA; Alsaedi A; Ismail N; Ab Kadir MO; Ahmad MI
    RSC Adv; 2021 Jul; 11(40):25018-25037. PubMed ID: 35481051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.
    Lam MK; Lee KT; Mohamed AR
    Biotechnol Adv; 2010; 28(4):500-18. PubMed ID: 20362044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced biocatalytic activity of immobilized steapsin lipase in supercritical carbon dioxide for production of biodiesel using waste cooking oil.
    Badgujar VC; Badgujar KC; Yeole PM; Bhanage BM
    Bioprocess Biosyst Eng; 2019 Jan; 42(1):47-61. PubMed ID: 30251191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodiesel production with microalgae as feedstock: from strains to biodiesel.
    Gong Y; Jiang M
    Biotechnol Lett; 2011 Jul; 33(7):1269-84. PubMed ID: 21380528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodiesel from microalgae.
    Chisti Y
    Biotechnol Adv; 2007; 25(3):294-306. PubMed ID: 17350212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress and Challenges in Microalgal Biodiesel Production.
    Mallick N; Bagchi SK; Koley S; Singh AK
    Front Microbiol; 2016; 7():1019. PubMed ID: 27446055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined immobilized lipases for effective biodiesel production from spent coffee grounds.
    Alonazi M; Al-Diahan SK; Alzahrani ZRA; Ben Bacha A
    Saudi J Biol Sci; 2023 Sep; 30(9):103772. PubMed ID: 37663395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase.
    Tran DT; Yeh KL; Chen CL; Chang JS
    Bioresour Technol; 2012 Mar; 108():119-27. PubMed ID: 22265981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in biodiesel production: Challenges and solutions.
    Mathew GM; Raina D; Narisetty V; Kumar V; Saran S; Pugazhendi A; Sindhu R; Pandey A; Binod P
    Sci Total Environ; 2021 Nov; 794():148751. PubMed ID: 34218145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene-based catalysts for biodiesel production: Characteristics and performance.
    Nazloo EK; Moheimani NR; Ennaceri H
    Sci Total Environ; 2023 Feb; 859(Pt 1):160000. PubMed ID: 36368383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions.
    Zhou D; Qiao B; Li G; Xue S; Yin J
    Bioresour Technol; 2017 Aug; 238():609-615. PubMed ID: 28482287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil.
    Tahvildari K; Anaraki YN; Fazaeli R; Mirpanji S; Delrish E
    J Environ Health Sci Eng; 2015; 13():73. PubMed ID: 26500782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipase-catalyzed biodiesel production and quality with Jatropha curcas oil: exploring its potential for Central America.
    Bueso F; Moreno L; CedeƱo M; Manzanarez K
    J Biol Eng; 2015; 9():12. PubMed ID: 26213567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.