BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21915410)

  • 1. Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network.
    Luo X; Holdcroft S; Mani A; Zhang Y; Shi Z
    Phys Chem Chem Phys; 2011 Oct; 13(40):18055-62. PubMed ID: 21915410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the hydration and diffusion of protons in perfluorosulfonic acid membranes with molecular dynamics simulations. scui@utk.edu.
    Cui S; Liu J; Selvan ME; Paddison SJ; Keffer DJ; Edwards BJ
    J Phys Chem B; 2008 Oct; 112(42):13273-84. PubMed ID: 18826266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(p-phenylene sulfone)s with high ion exchange capacity: ionomers with unique microstructural and transport features.
    de Araujo CC; Kreuer KD; Schuster M; Portale G; Mendil-Jakani H; Gebel G; Maier J
    Phys Chem Chem Phys; 2009 May; 11(17):3305-12. PubMed ID: 19370228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of morphology and proton transport in PFSA membranes.
    Elliott JA; Paddison SJ
    Phys Chem Chem Phys; 2007 Jun; 9(21):2602-18. PubMed ID: 17627306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modeling of proton transport in the short-side-chain perfluorosulfonic acid ionomer.
    Hristov IH; Paddison SJ; Paul R
    J Phys Chem B; 2008 Mar; 112(10):2937-49. PubMed ID: 18281980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications.
    Asano N; Aoki M; Suzuki S; Miyatake K; Uchida H; Watanabe M
    J Am Chem Soc; 2006 Feb; 128(5):1762-9. PubMed ID: 16448153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superior Proton Exchange Membrane Fuel Cell (PEMFC) Performance Using Short-Side-Chain Perfluorosulfonic Acid (PFSA) Membrane and Ionomer.
    Zhao N; Shi Z; Girard F
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscale modeling of hydrated morphologies of 3M perfluorosulfonic acid-based fuel cell electrolytes.
    Wu D; Paddison SJ; Elliott JA; Hamrock SJ
    Langmuir; 2010 Sep; 26(17):14308-15. PubMed ID: 20704341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation study on the effect of perfluorosulfonic acid side chains on oxygen permeation in hydrated ionomers of PEMFCs.
    Kwon SH; Kang H; Sohn YJ; Lee J; Shim S; Lee SG
    Sci Rep; 2021 Apr; 11(1):8702. PubMed ID: 33888751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report.
    Steininger H; Schuster M; Kreuer KD; Kaltbeitzel A; Bingöl B; Meyer WH; Schauff S; Brunklaus G; Maier J; Spiess HW
    Phys Chem Chem Phys; 2007 Apr; 9(15):1764-73. PubMed ID: 17415487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Humidity-Dependent Hydration and Proton Conductivity of PFSA Ionomer Thin Films at Fuel-Cell-Relevant Temperatures: Effect of Ionomer Equivalent Weight and Side-Chain Characteristics.
    Eskandari H; Paul DK; Young AP; Karan K
    ACS Appl Mater Interfaces; 2022 Nov; 14(45):50762-50772. PubMed ID: 36342365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight from molecular modelling: does the polymer side chain length matter for transport properties of perfluorosulfonic acid membranes?
    Devanathan R; Dupuis M
    Phys Chem Chem Phys; 2012 Aug; 14(32):11281-95. PubMed ID: 22517494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alcohol and proton transport in perfluorinated ionomer membranes for fuel cells.
    Saito M; Tsuzuki S; Hayamizu K; Okada T
    J Phys Chem B; 2006 Dec; 110(48):24410-7. PubMed ID: 17134195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells.
    Saito M; Hayamizu K; Okada T
    J Phys Chem B; 2005 Mar; 109(8):3112-9. PubMed ID: 16851330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships of Acid and water content to proton transport in statistically sulfonated proton exchange membranes: variation of water content via control of relative humidity.
    Peckham TJ; Schmeisser J; Holdcroft S
    J Phys Chem B; 2008 Mar; 112(10):2848-58. PubMed ID: 18288828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Comparison of Proton Exchange Membrane Fuel Cells with Nafion and Aquivion Perfluorosulfonic Acids with Different Equivalent Weights as the Electrode Binders.
    Li T; Shen J; Chen G; Guo S; Xie G
    ACS Omega; 2020 Jul; 5(28):17628-17636. PubMed ID: 32715248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing advanced alkaline polymer electrolytes for fuel cell applications.
    Pan J; Chen C; Zhuang L; Lu J
    Acc Chem Res; 2012 Mar; 45(3):473-81. PubMed ID: 22075175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(arylene ether)s containing superacid groups as proton exchange membranes.
    Mikami T; Miyatake K; Watanabe M
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1714-21. PubMed ID: 20491452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promising aquivion composite membranes based on fluoroalkyl zirconium phosphate for fuel cell applications.
    Donnadio A; Pica M; Subianto S; Jones DJ; Cojocaru P; Casciola M
    ChemSusChem; 2014 Aug; 7(8):2176-84. PubMed ID: 24975037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.