BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 21915425)

  • 1. Colloidal synthesis of metastable zinc-blende IV-VI SnS nanocrystals with tunable sizes.
    Deng Z; Han D; Liu Y
    Nanoscale; 2011 Oct; 3(10):4346-51. PubMed ID: 21915425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of iv-vi SnS nanocrystals with shape and size control: nanoparticles, nanoflowers and amorphous nanosheets.
    Ning J; Men K; Xiao G; Wang L; Dai Q; Zou B; Liu B; Zou G
    Nanoscale; 2010 Sep; 2(9):1699-703. PubMed ID: 20820700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI).
    Zhang YC; Li J; Zhang M; Dionysiou DD
    Environ Sci Technol; 2011 Nov; 45(21):9324-31. PubMed ID: 21970622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ capping for size control of monochalcogenide (ZnS, CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria.
    Jang GG; Jacobs CB; Ivanov IN; Joshi PC; Meyer HM; Kidder M; Armstrong BL; Datskos PG; Graham DE; Moon JW
    Nanotechnology; 2015 Aug; 26(32):325602. PubMed ID: 26207018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism.
    Yu JH; Joo J; Park HM; Baik SI; Kim YW; Kim SC; Hyeon T
    J Am Chem Soc; 2005 Apr; 127(15):5662-70. PubMed ID: 15826206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphological and phase stability of zinc blende, amorphous and mixed core-shell ZnS nanoparticles.
    Barnard AS; Feigl CA; Russo SP
    Nanoscale; 2010 Oct; 2(10):2294-301. PubMed ID: 20820648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing.
    Deng Z; Cao D; He J; Lin S; Lindsay SM; Liu Y
    ACS Nano; 2012 Jul; 6(7):6197-207. PubMed ID: 22738287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High on/off ratio field effect transistors based on exfoliated crystalline SnS2 nano-membranes.
    De D; Manongdo J; See S; Zhang V; Guloy A; Peng H
    Nanotechnology; 2013 Jan; 24(2):025202. PubMed ID: 23238583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals.
    Mahler B; Lequeux N; Dubertret B
    J Am Chem Soc; 2010 Jan; 132(3):953-9. PubMed ID: 20043669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly concentrated synthesis of copper-zinc-tin-sulfide nanocrystals with easily decomposable capping molecules for printed photovoltaic applications.
    Kim Y; Woo K; Kim I; Cho YS; Jeong S; Moon J
    Nanoscale; 2013 Nov; 5(21):10183-8. PubMed ID: 24057000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals.
    Wang DS; Xie T; Peng Q; Zhang SY; Chen J; Li YD
    Chemistry; 2008; 14(8):2507-13. PubMed ID: 18189257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale colloidal synthesis of non-stoichiometric Cu(2) ZnSnSe(4) nanocrystals for thermoelectric applications.
    Fan FJ; Wang YX; Liu XJ; Wu L; Yu SH
    Adv Mater; 2012 Dec; 24(46):6158-63. PubMed ID: 22961995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-controlled synthesis of Cu2ZnSnS4 nanocrystals: the role of reactivity between Zn and S.
    Zou Y; Su X; Jiang J
    J Am Chem Soc; 2013 Dec; 135(49):18377-84. PubMed ID: 24283701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis.
    Deng Z; Cao L; Tang F; Zou B
    J Phys Chem B; 2005 Sep; 109(35):16671-5. PubMed ID: 16853121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and crystallographic analysis of shape-controlled SnS nanocrystal photocatalysts: evidence for a pseudotetragonal structural modification.
    Biacchi AJ; Vaughn DD; Schaak RE
    J Am Chem Soc; 2013 Aug; 135(31):11634-44. PubMed ID: 23822536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel method of synthesis of small band gap SnS nanorods and its efficient photocatalytic dye degradation.
    Das D; Dutta RK
    J Colloid Interface Sci; 2015 Nov; 457():339-44. PubMed ID: 26196717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal nanocrystals of wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism.
    Regulacio MD; Ye C; Lim SH; Bosman M; Ye E; Chen S; Xu QH; Han MY
    Chemistry; 2012 Mar; 18(11):3127-31. PubMed ID: 22334488
    [No Abstract]   [Full Text] [Related]  

  • 18. Tetrahedral zinc blende tin sulfide nano- and microcrystals.
    Greyson EC; Barton JE; Odom TW
    Small; 2006 Mar; 2(3):368-71. PubMed ID: 17193052
    [No Abstract]   [Full Text] [Related]  

  • 19. Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres.
    Li XH; Li JX; Li GD; Liu DP; Chen JS
    Chemistry; 2007; 13(31):8754-61. PubMed ID: 17676576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band gap engineering of quaternary-alloyed ZnCdSSe quantum dots via a facile phosphine-free colloidal method.
    Deng Z; Yan H; Liu Y
    J Am Chem Soc; 2009 Dec; 131(49):17744-5. PubMed ID: 19928806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.