These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 21915610)
1. Trypsin promotes efficient influenza vaccine production in MDCK cells by interfering with the antiviral host response. Seitz C; Isken B; Heynisch B; Rettkowski M; Frensing T; Reichl U Appl Microbiol Biotechnol; 2012 Jan; 93(2):601-11. PubMed ID: 21915610 [TBL] [Abstract][Full Text] [Related]
2. Efficient influenza B virus propagation due to deficient interferon-induced antiviral activity in MDCK cells. Frensing T; Seitz C; Heynisch B; Patzina C; Kochs G; Reichl U Vaccine; 2011 Sep; 29(41):7125-9. PubMed ID: 21651940 [TBL] [Abstract][Full Text] [Related]
3. High yields of influenza A virus in Madin-Darby canine kidney cells are promoted by an insufficient interferon-induced antiviral state. Seitz C; Frensing T; Höper D; Kochs G; Reichl U J Gen Virol; 2010 Jul; 91(Pt 7):1754-63. PubMed ID: 20357039 [TBL] [Abstract][Full Text] [Related]
4. Development and strategies of cell-culture technology for influenza vaccine. Feng SZ; Jiao PR; Qi WB; Fan HY; Liao M Appl Microbiol Biotechnol; 2011 Feb; 89(4):893-902. PubMed ID: 21063703 [TBL] [Abstract][Full Text] [Related]
5. Rational design of medium supplementation strategy for improved influenza viruses production based on analyzing nutritional requirements of MDCK Cells. Huang D; Xia-Hou K; Liu XP; Zhao L; Fan L; Ye Z; Tan WS; Luo J; Chen Z Vaccine; 2014 Dec; 32(52):7091-7. PubMed ID: 25444832 [TBL] [Abstract][Full Text] [Related]
6. Impact of defective interfering particles on virus replication and antiviral host response in cell culture-based influenza vaccine production. Frensing T; Pflugmacher A; Bachmann M; Peschel B; Reichl U Appl Microbiol Biotechnol; 2014 Nov; 98(21):8999-9008. PubMed ID: 25132064 [TBL] [Abstract][Full Text] [Related]
7. Comparison of influenza virus yields and apoptosis-induction in an adherent and a suspension MDCK cell line. Peschel B; Frentzel S; Laske T; Genzel Y; Reichl U Vaccine; 2013 Nov; 31(48):5693-9. PubMed ID: 24113260 [TBL] [Abstract][Full Text] [Related]
8. Differential activation of host cell signalling pathways through infection with two variants of influenza A/Puerto Rico/8/34 (H1N1) in MDCK cells. Heynisch B; Frensing T; Heinze K; Seitz C; Genzel Y; Reichl U Vaccine; 2010 Nov; 28(51):8210-8. PubMed ID: 20691654 [TBL] [Abstract][Full Text] [Related]
9. MDCK cell line with inducible allele B NS1 expression propagates delNS1 influenza virus to high titres. van Wielink R; Harmsen MM; Martens DE; Peeters BP; Wijffels RH; Moormann RJ Vaccine; 2011 Sep; 29(40):6976-85. PubMed ID: 21787829 [TBL] [Abstract][Full Text] [Related]
10. Suitability of MDCK cells grown in a serum-free medium for influenza virus production. Kessler N; Thomas-Roche G; Gérentes L; Aymard M Dev Biol Stand; 1999; 98():13-21; discussion 73-4. PubMed ID: 10494956 [TBL] [Abstract][Full Text] [Related]
11. Bioprocess optimization for cell culture based influenza vaccine production. Aggarwal K; Jing F; Maranga L; Liu J Vaccine; 2011 Apr; 29(17):3320-8. PubMed ID: 21335031 [TBL] [Abstract][Full Text] [Related]
12. Productivity, apoptosis, and infection dynamics of influenza A/PR/8 strains and A/PR/8-based reassortants. Isken B; Genzel Y; Reichl U Vaccine; 2012 Jul; 30(35):5253-61. PubMed ID: 22698452 [TBL] [Abstract][Full Text] [Related]
13. Production of cell culture (MDCK) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process. George M; Farooq M; Dang T; Cortes B; Liu J; Maranga L Biotechnol Bioeng; 2010 Aug; 106(6):906-17. PubMed ID: 20589670 [TBL] [Abstract][Full Text] [Related]
14. CAP, a new human suspension cell line for influenza virus production. Genzel Y; Behrendt I; Rödig J; Rapp E; Kueppers C; Kochanek S; Schiedner G; Reichl U Appl Microbiol Biotechnol; 2013 Jan; 97(1):111-22. PubMed ID: 22821436 [TBL] [Abstract][Full Text] [Related]
15. Microcarrier-based MDCK cell culture system for the production of influenza H5N1 vaccines. Hu AY; Weng TC; Tseng YF; Chen YS; Wu CH; Hsiao S; Chou AH; Chao HJ; Gu A; Wu SC; Chong P; Lee MS Vaccine; 2008 Oct; 26(45):5736-40. PubMed ID: 18761387 [TBL] [Abstract][Full Text] [Related]
16. Production of influenza H1N1 vaccine from MDCK cells using a novel disposable packed-bed bioreactor. Sun B; Yu X; Kong W; Sun S; Yang P; Zhu C; Zhang H; Wu Y; Chen Y; Shi Y; Zhang X; Jiang C Appl Microbiol Biotechnol; 2013 Feb; 97(3):1063-70. PubMed ID: 22945265 [TBL] [Abstract][Full Text] [Related]
17. High yield production of influenza virus in Madin Darby canine kidney (MDCK) cells with stable knockdown of IRF7. Hamamoto I; Takaku H; Tashiro M; Yamamoto N PLoS One; 2013; 8(3):e59892. PubMed ID: 23555825 [TBL] [Abstract][Full Text] [Related]
18. Adaptation of a Madin-Darby canine kidney cell line to suspension growth in serum-free media and comparison of its ability to produce avian influenza virus to Vero and BHK21 cell lines. van Wielink R; Kant-Eenbergen HC; Harmsen MM; Martens DE; Wijffels RH; Coco-Martin JM J Virol Methods; 2011 Jan; 171(1):53-60. PubMed ID: 20933017 [TBL] [Abstract][Full Text] [Related]
19. Use of MDCK cells for production of live attenuated influenza vaccine. Liu J; Shi X; Schwartz R; Kemble G Vaccine; 2009 Oct; 27(46):6460-3. PubMed ID: 19559113 [TBL] [Abstract][Full Text] [Related]
20. Cloning and assessment of tumorigenicity and oncogenicity of a Madin-Darby canine kidney (MDCK) cell line for influenza vaccine production. Liu J; Mani S; Schwartz R; Richman L; Tabor DE Vaccine; 2010 Feb; 28(5):1285-93. PubMed ID: 19944150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]