These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 21915698)
1. Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature. Stan GE; Pasuk I; Husanu MA; Enculescu I; Pina S; Lemos AF; Tulyaganov DU; El Mabrouk K; Ferreira JM J Mater Sci Mater Med; 2011 Dec; 22(12):2693-710. PubMed ID: 21915698 [TBL] [Abstract][Full Text] [Related]
2. Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering. Stan GE; Pina S; Tulyaganov DU; Ferreira JM; Pasuk I; Morosanu CO J Mater Sci Mater Med; 2010 Apr; 21(4):1047-55. PubMed ID: 20091102 [TBL] [Abstract][Full Text] [Related]
4. Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications. Popa AC; Stan GE; Besleaga C; Ion L; Maraloiu VA; Tulyaganov DU; Ferreira JM ACS Appl Mater Interfaces; 2016 Feb; 8(7):4357-67. PubMed ID: 26836256 [TBL] [Abstract][Full Text] [Related]
5. Hydrothermal crystallization of carbonate-containing hydroxyapatite coatings prepared by radiofrequency-magnetron sputtering method. Nakamura S; Hamagami J; Yamashita K J Biomed Mater Res B Appl Biomater; 2007 Jan; 80(1):102-6. PubMed ID: 16680690 [TBL] [Abstract][Full Text] [Related]
6. Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry. Popa AC; Stan GE; Husanu MA; Mercioniu I; Santos LF; Fernandes HR; Ferreira J Int J Nanomedicine; 2017; 12():683-707. PubMed ID: 28176941 [TBL] [Abstract][Full Text] [Related]
7. Effect of pre-treatment of crystallized bioactive glass with cell culture media on structure, degradability, and biocompatibility. Thavornyutikarn B; Feltis B; Wright PFA; Turney TW Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():188-197. PubMed ID: 30678903 [TBL] [Abstract][Full Text] [Related]
8. Mechano-tribological properties and in vitro bioactivity of biphasic calcium phosphate coating on Ti-6Al-4V. Behera RR; Das A; Pamu D; Pandey LM; Sankar MR J Mech Behav Biomed Mater; 2018 Oct; 86():143-157. PubMed ID: 29986289 [TBL] [Abstract][Full Text] [Related]
9. Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity. Lilja M; Genvad A; Astrand M; Strømme M; Enqvist H J Mater Sci Mater Med; 2011 Dec; 22(12):2727-34. PubMed ID: 22052535 [TBL] [Abstract][Full Text] [Related]
10. Interfacial titanium oxide between hydroxyapatite and TiAlFe substrate. Nelea V; Morosanu C; Bercu M; Mihailescu IN J Mater Sci Mater Med; 2007 Dec; 18(12):2347-54. PubMed ID: 17569010 [TBL] [Abstract][Full Text] [Related]
11. In situ study of partially crystallized Bioglass and hydroxylapatite in vitro bioactivity using atomic force microscopy. Leonor IB; Ito A; Onuma K; Kanzaki N; Zhong ZP; Greenspan D; Reis RL J Biomed Mater Res; 2002 Oct; 62(1):82-8. PubMed ID: 12124789 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of calcium phosphate films for coating on titanium substrates heated up to 773 K by RF magnetron sputtering and their evaluations. Ueda K; Narushima T; Goto T; Taira M; Katsube T Biomed Mater; 2007 Sep; 2(3):S160-6. PubMed ID: 18458462 [TBL] [Abstract][Full Text] [Related]
13. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca-P bioceramic coating. Paital SR; Dahotre NB Acta Biomater; 2009 Sep; 5(7):2763-72. PubMed ID: 19362524 [TBL] [Abstract][Full Text] [Related]
14. In vitro evaluation of different heat-treated radio frequency magnetron sputtered calcium phosphate coatings. Yonggang Y; Wolke JG; Yubao L; Jansen JA Clin Oral Implants Res; 2007 Jun; 18(3):345-53. PubMed ID: 17298487 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the adhesion properties of calcium-phosphate coating to titanium substrate with regards to the parameters of high-frequency magnetron sputtering. Kenzhegulov AK; Mamaeva AA; Panichkin AV; Prosolov KA; BroŃczyk A; Capanidis D Acta Bioeng Biomech; 2020; 22(2):111-120. PubMed ID: 32868934 [TBL] [Abstract][Full Text] [Related]
16. Biological effect of hydrothermally synthesized silica nanoparticles within crystalline hydroxyapatite coatings for titanium implants. Bartkowiak A; Suchanek K; Menaszek E; Szaraniec B; Lekki J; Perzanowski M; Marszałek M Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():88-95. PubMed ID: 30184818 [TBL] [Abstract][Full Text] [Related]
17. Novel silicon-doped hydroxyapatite (Si-HA) for biomedical coatings: an in vitro study using acellular simulated body fluid. Thian ES; Huang J; Best SM; Barber ZH; Bonfield W J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):326-33. PubMed ID: 16080174 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of bioactivity of titanium carbonitride nanocomposite thin films on steels with biosynthesized hydroxyapatite. Thampi VV; Dhandapani P; Manivasagam G; Subramanian B Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):107-18. PubMed ID: 26491312 [TBL] [Abstract][Full Text] [Related]
19. Sputtered Si and Mg doped hydroxyapatite for biomedical applications. Vladescu A; Mihai Cotrut C; Ak Azem F; Bramowicz M; Pana I; Braic V; Birlik I; Kiss A; Braic M; Abdulgader R; Booysen R; Kulesza S; Monsees TK Biomed Mater; 2018 Jan; 13(2):025011. PubMed ID: 29381477 [TBL] [Abstract][Full Text] [Related]
20. Effects of calcium phosphate composition in sputter coatings on in vitro and in vivo performance. Urquia Edreira ER; Wolke JG; Aldosari AA; Al-Johany SS; Anil S; Jansen JA; van den Beucken JJ J Biomed Mater Res A; 2015 Jan; 103(1):300-10. PubMed ID: 24659523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]