BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 21915794)

  • 1. Small RNA discovery and characterisation in eukaryotes using high-throughput approaches.
    Pais H; Moxon S; Dalmay T; Moulton V
    Adv Exp Med Biol; 2011; 722():239-54. PubMed ID: 21915794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target identification of small noncoding RNAs in bacteria.
    Vogel J; Wagner EG
    Curr Opin Microbiol; 2007 Jun; 10(3):262-70. PubMed ID: 17574901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep sequencing of small RNAs in plants: applied bioinformatics.
    Studholme DJ
    Brief Funct Genomics; 2012 Jan; 11(1):71-85. PubMed ID: 22184332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pooled shRNA screenings: computational analysis.
    Yu J; Putcha P; Califano A; Silva JM
    Methods Mol Biol; 2013; 980():371-84. PubMed ID: 23359167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of plant small RNA cDNA libraries for high-throughput sequencing.
    Zhu QH; Helliwell CA
    Methods Mol Biol; 2012; 894():123-37. PubMed ID: 22678577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatic prediction and experimental verification of sRNAs in the haloarchaeon Haloferax volcanii.
    Babski J; Tjaden B; Voss B; Jellen-Ritter A; Marchfelder A; Hess WR; Soppa J
    RNA Biol; 2011; 8(5):806-16. PubMed ID: 21712649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small RNAs of Sequoia sempervirens during rejuvenation and phase change.
    Chen YT; Shen CH; Lin WD; Chu HA; Huang BL; Kuo CI; Yeh KW; Huang LC; Chang IF
    Plant Biol (Stuttg); 2013 Jan; 15(1):27-36. PubMed ID: 23016572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules.
    Thody J; Folkes L; Medina-Calzada Z; Xu P; Dalmay T; Moulton V
    Nucleic Acids Res; 2018 Sep; 46(17):8730-8739. PubMed ID: 30007348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How to find small non-coding RNAs in bacteria.
    Vogel J; Sharma CM
    Biol Chem; 2005 Dec; 386(12):1219-38. PubMed ID: 16336117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying expression of new small RNAs by microarrays.
    Yin JQ; Zhao RC
    Methods; 2007 Oct; 43(2):123-30. PubMed ID: 17889799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding differentially expressed sRNA-Seq regions with srnadiff.
    Zytnicki M; González I
    PLoS One; 2021; 16(8):e0256196. PubMed ID: 34415926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies.
    Barquist L; Vogel J
    Annu Rev Genet; 2015; 49():367-94. PubMed ID: 26473381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PAREsnip: a tool for rapid genome-wide discovery of small RNA/target interactions evidenced through degradome sequencing.
    Folkes L; Moxon S; Woolfenden HC; Stocks MB; Szittya G; Dalmay T; Moulton V
    Nucleic Acids Res; 2012 Jul; 40(13):e103. PubMed ID: 22467211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental approaches for the discovery and characterization of regulatory small RNA.
    Sharma CM; Vogel J
    Curr Opin Microbiol; 2009 Oct; 12(5):536-46. PubMed ID: 19758836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New approaches for the analysis of Arabidopsis thaliana small RNAs.
    Boccara M; Sarazin A; Billoud B; Jolly V; Martienssen R; Baulcombe D; Colot V
    Biochimie; 2007 Oct; 89(10):1252-6. PubMed ID: 17562352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New virus discovery by deep sequencing of small RNAs.
    Singh K; Kaur R; Qiu W
    Methods Mol Biol; 2012; 883():177-91. PubMed ID: 22589134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of non-coding RNA in bacteria and archaea using the DETR'PROK Galaxy pipeline.
    Toffano-Nioche C; Luo Y; Kuchly C; Wallon C; Steinbach D; Zytnicki M; Jacq A; Gautheret D
    Methods; 2013 Sep; 63(1):60-5. PubMed ID: 23806640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of small non-coding RNAs in the planarian Dugesia japonica via deep sequencing.
    Qin YF; Zhao JM; Bao ZX; Zhu ZY; Mai J; Huang YB; Li JB; Chen G; Lu P; Chen SJ; Su LL; Fang HM; Lu JK; Zhang YZ; Zhang ST
    Genomics; 2012 May; 99(5):315-21. PubMed ID: 22425900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA).
    Ramesh SV
    Mol Biotechnol; 2013 Sep; 55(1):87-100. PubMed ID: 23381873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive processing of high-throughput small RNA sequencing data including quality checking, normalization, and differential expression analysis using the UEA sRNA Workbench.
    Beckers M; Mohorianu I; Stocks M; Applegate C; Dalmay T; Moulton V
    RNA; 2017 Jun; 23(6):823-835. PubMed ID: 28289155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.