BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 21916013)

  • 1. Promising TiOSO₄ composite polybenzimidazole-based membranes for high temperature PEMFCs.
    Lobato J; Cañizares P; Rodrigo MA; Ubeda D; Pinar FJ
    ChemSusChem; 2011 Oct; 4(10):1489-97. PubMed ID: 21916013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte.
    Li J; Li X; Zhao Y; Lu W; Shao Z; Yi B
    ChemSusChem; 2012 May; 5(5):896-900. PubMed ID: 22529063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.
    Nawn G; Pace G; Lavina S; Vezzù K; Negro E; Bertasi F; Polizzi S; Di Noto V
    ChemSusChem; 2015 Apr; 8(8):1381-93. PubMed ID: 25801848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Durability of sulfonated aromatic polymers for proton-exchange-membrane fuel cells.
    Hou H; Di Vona ML; Knauth P
    ChemSusChem; 2011 Nov; 4(11):1526-36. PubMed ID: 22006846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman study of the polybenzimidazole-phosphoric acid interactions in membranes for fuel cells.
    Conti F; Majerus A; Di Noto V; Korte C; Lehnert W; Stolten D
    Phys Chem Chem Phys; 2012 Jul; 14(28):10022-6. PubMed ID: 22699788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of TiO2 nano-powders prepared from purified sulphate leach liquor of red mud.
    Tsakiridis PE; Oustadakis P; Katsiapi A; Perraki M; Agatzini-Leonardou S
    J Hazard Mater; 2011 Oct; 194():42-7. PubMed ID: 21868153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs.
    Olvera-Mancilla J; Escorihuela J; Alexandrova L; Andrio A; García-Bernabé A; Del Castillo LF; Compañ V
    Soft Matter; 2020 Aug; 16(32):7624-7635. PubMed ID: 32735001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The uptake of titanium ions by hydroxyapatite particles-structural changes and possible mechanisms.
    Ribeiro CC; Gibson I; Barbosa MA
    Biomaterials; 2006 Mar; 27(9):1749-61. PubMed ID: 16256192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and luminescent properties of CaTiO3: Pr3+ microfibers prepared by electrospinning method.
    Peng C; Hou Z; Zhang C; Li G; Lian H; Cheng Z; Lin J
    Opt Express; 2010 Mar; 18(7):7543-53. PubMed ID: 20389776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of modified polymer inclusion membranes for photo-electrodeposition of cadmium using polarized electrodes.
    Cherif AY; Arous O; Amara M; Omeiri S; Kerdjoudj H; Trari M
    J Hazard Mater; 2012 Aug; 227-228():386-93. PubMed ID: 22695385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of sulfated Y-doped zirconia particles and effect on properties of polysulfone membranes for treatment of wastewater containing oil.
    Zhang Y; Shan X; Jin Z; Wang Y
    J Hazard Mater; 2011 Aug; 192(2):559-67. PubMed ID: 21664050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical investigation of pulsed laser deposited carbonated hydroxyapatite films on titanium.
    Rau JV; Generosi A; Laureti S; Komlev VS; Ferro D; Cesaro SN; Paci B; Albertini VR; Agostinelli E; Barinov SM
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1813-20. PubMed ID: 20355798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications.
    Yang J; Aili D; Li Q; Cleemann LN; Jensen JO; Bjerrum NJ; He R
    ChemSusChem; 2013 Feb; 6(2):275-82. PubMed ID: 23303655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest.
    Asensio JA; Sánchez EM; Gómez-Romero P
    Chem Soc Rev; 2010 Aug; 39(8):3210-39. PubMed ID: 20577662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply.
    Tsushima S; Teranishi K; Nishida K; Hirai S
    Magn Reson Imaging; 2005 Feb; 23(2):255-8. PubMed ID: 15833622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anhydrous proton-conducting polymeric electrolytes for fuel cells.
    Narayanan SR; Yen SP; Liu L; Greenbaum SG
    J Phys Chem B; 2006 Mar; 110(9):3942-8. PubMed ID: 16509680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of oxygen-diffused titanium for biomedical applications.
    Yamamoto O; Alvarez K; Kikuchi T; Fukuda M
    Acta Biomater; 2009 Nov; 5(9):3605-15. PubMed ID: 19523543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the high performance polymer electrolyte membranes for fuel cells.
    Zhang H; Shen PK
    Chem Soc Rev; 2012 Mar; 41(6):2382-94. PubMed ID: 22222889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired blend membranes based on adenine and guanine functional poly(glycidyl methacrylate).
    Aslan A; Bozkurt A
    Langmuir; 2010 Aug; 26(16):13655-61. PubMed ID: 20695617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.