BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21916414)

  • 1. An N-terminal protein degradation tag enables robust selection of highly active enzymes.
    Butz M; Neuenschwander M; Kast P; Hilvert D
    Biochemistry; 2011 Oct; 50(40):8594-602. PubMed ID: 21916414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of catalysis of the chorismate to prephenate reaction by the Escherichia coli mutase enzyme.
    Hur S; Bruice TC
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1176-81. PubMed ID: 11818529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple selection strategy for evolving highly efficient enzymes.
    Neuenschwander M; Butz M; Heintz C; Kast P; Hilvert D
    Nat Biotechnol; 2007 Oct; 25(10):1145-7. PubMed ID: 17873865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Saridakis VC; Turnbull JL
    Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Just a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzymes, and their mutants).
    Hur S; Bruice TC
    J Am Chem Soc; 2003 Sep; 125(35):10540-2. PubMed ID: 12940735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the role of active-site residues in chorismate mutase catalysis from molecular-dynamics simulations.
    Guo H; Cui Q; Lipscomb WN; Karplus M
    Angew Chem Int Ed Engl; 2003 Apr; 42(13):1508-11. PubMed ID: 12698486
    [No Abstract]   [Full Text] [Related]  

  • 8. The monofunctional chorismate mutase from Bacillus subtilis. Structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications for the mechanism of the enzymatic reaction.
    Chook YM; Gray JV; Ke H; Lipscomb WN
    J Mol Biol; 1994 Jul; 240(5):476-500. PubMed ID: 8046752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of ligand binding and protein dynamics in Bacillus subtilis chorismate mutase by transverse relaxation optimized spectroscopy-nuclear magnetic resonance.
    Eletsky A; Kienhöfer A; Hilvert D; Pervushin K
    Biochemistry; 2005 May; 44(18):6788-99. PubMed ID: 15865424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase.
    Crespo A; Martí MA; Estrin DA; Roitberg AE
    J Am Chem Soc; 2005 May; 127(19):6940-1. PubMed ID: 15884923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of formation of reactive conformers (NACs) for the Claisen rearrangement of chorismate to prephenate in water and in the E. coli mutase: the efficiency of the enzyme catalysis.
    Hur S; Bruice TC
    J Am Chem Soc; 2003 May; 125(19):5964-72. PubMed ID: 12733937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective stabilization of the chorismate mutase transition state by a positively charged hydrogen bond donor.
    Kienhöfer A; Kast P; Hilvert D
    J Am Chem Soc; 2003 Mar; 125(11):3206-7. PubMed ID: 12630863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential transition-state stabilization in enzyme catalysis: quantum chemical analysis of interactions in the chorismate mutase reaction and prediction of the optimal catalytic field.
    Szefczyk B; Mulholland AJ; Ranaghan KE; Sokalski WA
    J Am Chem Soc; 2004 Dec; 126(49):16148-59. PubMed ID: 15584751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the active site of chorismate mutase by combinatorial mutagenesis and selection: the importance of electrostatic catalysis.
    Kast P; Asif-Ullah M; Jiang N; Hilvert D
    Proc Natl Acad Sci U S A; 1996 May; 93(10):5043-8. PubMed ID: 8643526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New enzymes from combinatorial library modules.
    Besenmatter W; Kast P; Hilvert D
    Methods Enzymol; 2004; 388():91-102. PubMed ID: 15289064
    [No Abstract]   [Full Text] [Related]  

  • 16. The near attack conformation approach to the study of the chorismate to prephenate reaction.
    Hur S; Bruice TC
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12015-20. PubMed ID: 14523243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative biochemical and structural analysis of the intracellular chorismate mutase (Rv0948c) from Mycobacterium tuberculosis H(37)R(v) and the secreted chorismate mutase (y2828) from Yersinia pestis.
    Kim SK; Reddy SK; Nelson BC; Robinson H; Reddy PT; Ladner JE
    FEBS J; 2008 Oct; 275(19):4824-35. PubMed ID: 18727669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity.
    Lassila JK; Keeffe JR; Oelschlaeger P; Mayo SL
    Protein Eng Des Sel; 2005 Apr; 18(4):161-3. PubMed ID: 15820980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.
    Roderer K; Neuenschwander M; Codoni G; Sasso S; Gamper M; Kast P
    PLoS One; 2014; 9(12):e116234. PubMed ID: 25551646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1.6 A crystal structure of the secreted chorismate mutase from Mycobacterium tuberculosis: novel fold topology revealed.
    Okvist M; Dey R; Sasso S; Grahn E; Kast P; Krengel U
    J Mol Biol; 2006 Apr; 357(5):1483-99. PubMed ID: 16499927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.