These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21916449)

  • 1. Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes.
    Lee YK; Jung CH; Park J; Seo H; Somorjai GA; Park JY
    Nano Lett; 2011 Oct; 11(10):4251-5. PubMed ID: 21916449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
    Park JY; Kim SM; Lee H; Nedrygailov II
    Acc Chem Res; 2015 Aug; 48(8):2475-83. PubMed ID: 26181684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplification of hot electron flow by the surface plasmon effect on metal-insulator-metal nanodiodes.
    Lee C; Nedrygailov II; Lee YK; Ahn C; Lee H; Jeon S; Park JY
    Nanotechnology; 2015 Nov; 26(44):445201. PubMed ID: 26451470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography.
    Kang M; Park Y; Lee H; Lee C; Park JY
    Nanotechnology; 2021 Mar; 32(22):. PubMed ID: 33607643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal-Semiconductor Nanodiodes.
    Jeon B; Lee C; Park JY
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):9252-9259. PubMed ID: 33587596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.
    Lee YK; Lee H; Lee C; Hwang E; Park JY
    J Phys Condens Matter; 2016 Jun; 28(25):254006. PubMed ID: 27168177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes.
    Lee YK; Choi H; Lee H; Lee C; Choi JS; Choi CG; Hwang E; Park JY
    Sci Rep; 2016 Jun; 6():27549. PubMed ID: 27271245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO
    Lee H; Lee H; Park JY
    Nano Lett; 2019 Feb; 19(2):891-896. PubMed ID: 30608712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes.
    Kang M; Jeon B; Park JY
    Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embedding plasmonic nanostructure diodes enhances hot electron emission.
    Knight MW; Wang Y; Urban AS; Sobhani A; Zheng BY; Nordlander P; Halas NJ
    Nano Lett; 2013 Apr; 13(4):1687-92. PubMed ID: 23452192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of Hot Electron Flow in Plasmonic Nanodiodes by Incorporating PbS Quantum Dots.
    Lee C; Choi H; Nedrygailov II; Lee YK; Jeong S; Park JY
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5081-5089. PubMed ID: 29308649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of anisotropic electron momentum distribution of surface plasmon on internal photoemission of a Schottky hot carrier device.
    Li XH; Chou JB; Kwan WL; Elsharif AM; Kim SG
    Opt Express; 2017 Apr; 25(8):A264-A273. PubMed ID: 28437894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot electron-driven photocatalytic water splitting.
    Hou B; Shen L; Shi H; Kapadia R; Cronin SB
    Phys Chem Chem Phys; 2017 Jan; 19(4):2877-2881. PubMed ID: 28074948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hot-electron photodetector with wavelength selectivity in near-infrared via Tamm plasmon.
    Wang Z; Clark JK; Ho YL; Delaunay JJ
    Nanoscale; 2019 Sep; 11(37):17407-17414. PubMed ID: 31528935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot plasmonic electrons for generation of enhanced photocurrent in gold-TiO2 nanocomposites.
    Brennan LJ; Purcell-Milton F; Salmeron AS; Zhang H; Govorov AO; Fedorov AV; Gun'ko YK
    Nanoscale Res Lett; 2015; 10():38. PubMed ID: 25852335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing hot electron flow generated on Pt nanoparticles with Au/TiO2 Schottky diodes during catalytic CO oxidation.
    Park JY; Lee H; Renzas JR; Zhang Y; Somorjai GA
    Nano Lett; 2008 Aug; 8(8):2388-92. PubMed ID: 18572970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot plasmonic electron-driven catalytic reactions on patterned metal-insulator-metal nanostructures.
    Kim SM; Lee C; Goddeti KC; Park JY
    Nanoscale; 2017 Aug; 9(32):11667-11677. PubMed ID: 28776052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2.
    Wang W; Klots A; Prasai D; Yang Y; Bolotin KI; Valentine J
    Nano Lett; 2015 Nov; 15(11):7440-4. PubMed ID: 26426510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.