These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21917046)

  • 1. Mixed-source reintroductions lead to outbreeding depression in second-generation descendents of a native North American fish.
    Huff DD; Miller LM; Chizinski CJ; Vondracek B
    Mol Ecol; 2011 Oct; 20(20):4246-58. PubMed ID: 21917046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Which species, how many, and from where: Integrating habitat suitability, population genomics, and abundance estimates into species reintroduction planning.
    Malone EW; Perkin JS; Leckie BM; Kulp MA; Hurt CR; Walker DM
    Glob Chang Biol; 2018 Aug; 24(8):3729-3748. PubMed ID: 29543361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic evaluation of remnant and translocated shiners, Notropis heterodon and Notropis heterolepis.
    Ozer F; Ashley MV
    J Fish Biol; 2013 Apr; 82(4):1281-96. PubMed ID: 23557306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk assessment of inbreeding and outbreeding depression in a captive-breeding program.
    Rollinson N; Keith DM; Houde AL; Debes PV; McBride MC; Hutchings JA
    Conserv Biol; 2014 Apr; 28(2):529-40. PubMed ID: 24476089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do reproductive skew and founder group size affect genetic diversity in reintroduced populations?
    Miller KA; Nelson NJ; Smith HG; Moore JA
    Mol Ecol; 2009 Sep; 18(18):3792-802. PubMed ID: 19732338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal analysis of genetic structure to assess population dynamics of reintroduced swift foxes.
    Cullingham CI; Moehrenschlager A
    Conserv Biol; 2013 Dec; 27(6):1389-98. PubMed ID: 24033503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Captive breeding and the reintroduction of Mexican and red wolves.
    Hedrick PW; Fredrickson RJ
    Mol Ecol; 2008 Jan; 17(1):344-50. PubMed ID: 18173506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs.
    Jamieson IG
    Conserv Biol; 2011 Feb; 25(1):115-23. PubMed ID: 20825445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated approach for predicting fates of reintroductions with demographic data from multiple populations.
    Parlato EH; Armstrong DP
    Conserv Biol; 2012 Feb; 26(1):97-106. PubMed ID: 22098341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management.
    Edmands S
    Mol Ecol; 2007 Feb; 16(3):463-75. PubMed ID: 17257106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying correlates of success and failure of native freshwater fish reintroductions.
    Cochran-Biederman JL; Wyman KE; French WE; Loppnow GL
    Conserv Biol; 2015 Feb; 29(1):175-86. PubMed ID: 25115187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive harvesting of source populations for translocation: a case study with New Zealand Robins.
    Dimond WJ; Armstrong DP
    Conserv Biol; 2007 Feb; 21(1):114-24. PubMed ID: 17298517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraspecific chromosome number variation: a neglected threat to the conservation of rare plants.
    Severns PM; Liston A
    Conserv Biol; 2008 Dec; 22(6):1641-7. PubMed ID: 18798860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal monitoring of neutral and adaptive genomic diversity in a reintroduction.
    Marshall IR; Brauer CJ; Wedderburn SD; Whiterod NS; Hammer MP; Barnes TC; Attard CRM; Möller LM; Beheregaray LB
    Conserv Biol; 2022 Aug; 36(4):e13889. PubMed ID: 35023224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subspecies hybridization as a potential conservation tool in species reintroductions.
    Zecherle LJ; Nichols HJ; Bar-David S; Brown RP; Hipperson H; Horsburgh GJ; Templeton AR
    Evol Appl; 2021 May; 14(5):1216-1224. PubMed ID: 34025762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population.
    De Barba M; Waits LP; Garton EO; Genovesi P; Randi E; Mustoni A; Groff C
    Mol Ecol; 2010 Sep; 19(18):3938-51. PubMed ID: 20735733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlocal transplantation and outbreeding depression in the subshrub Lotus scoparius (Fabaceae).
    Montalvo AM; Ellstrand NC
    Am J Bot; 2001 Feb; 88(2):258-69. PubMed ID: 11222248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native South American genetic structure and prehistory inferred from hierarchical modeling of mtDNA.
    Lewis CM; Long JC
    Mol Biol Evol; 2008 Mar; 25(3):478-86. PubMed ID: 18222947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genealogy and genetic viability of reintroduced Yellowstone grey wolves.
    Vonholdt BM; Stahler DR; Smith DW; Earl DA; Pollinger JP; Wayne RK
    Mol Ecol; 2008 Jan; 17(1):252-74. PubMed ID: 17877715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong intraspecific variation in genetic diversity and genetic differentiation in Daphnia magna: the effects of population turnover and population size.
    Walser B; Haag CR
    Mol Ecol; 2012 Feb; 21(4):851-61. PubMed ID: 22221402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.