BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2191717)

  • 1. NMR study of the phosphoryl binding loop in purine nucleotide proteins: evidence for strong hydrogen bonding in human N-ras p21.
    Redfield AG; Papastavros MZ
    Biochemistry; 1990 Apr; 29(14):3509-14. PubMed ID: 2191717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR study of the phosphate-binding elements of Escherichia coli elongation factor Tu catalytic domain.
    Lowry DF; Cool RH; Redfield AG; Parmeggiani A
    Biochemistry; 1991 Nov; 30(45):10872-7. PubMed ID: 1932010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and dynamic differences between normal and transforming N-ras gene products: a 31P and isotope-edited 1H NMR study.
    Campbell-Burk S
    Biochemistry; 1989 Nov; 28(24):9478-84. PubMed ID: 2692710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR study of the phosphate-binding loops of Thermus thermophilus elongation factor Tu.
    Lowry DF; Ahmadian MR; Redfield AG; Sprinzl M
    Biochemistry; 1992 Mar; 31(11):2977-82. PubMed ID: 1550823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the nucleotide-dependent conformational change of human N-ras p21 in solution by heteronuclear-edited proton-observed NMR methods.
    Hu JS; Redfield AG
    Biochemistry; 1993 Jul; 32(26):6763-72. PubMed ID: 8329399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in the metal-binding sites of cardiac troponin C induced by calcium binding.
    Krudy GA; Brito RM; Putkey JA; Rosevear PR
    Biochemistry; 1992 Feb; 31(6):1595-602. PubMed ID: 1737016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide binding and GTP hydrolysis by the 21-kDa product of the c-H-ras gene as monitored by proton-NMR spectroscopy.
    Löw A; Sprinzl M; Limmer S
    Eur J Biochem; 1993 Apr; 213(2):781-8. PubMed ID: 8386636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR studies of the conformational change in human N-p21ras produced by replacement of bound GDP with the GTP analog GTP gamma S.
    Miller AF; Papastavros MZ; Redfield AG
    Biochemistry; 1992 Oct; 31(42):10208-16. PubMed ID: 1420142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An NMR comparison of the changes produced by different guanosine 5'-triphosphate analogs in wild-type and oncogenic mutant p21ras.
    Miller AF; Halkides CJ; Redfield AG
    Biochemistry; 1993 Jul; 32(29):7367-76. PubMed ID: 8338834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of resonances from an oncogenic activating locus of human N-RAS-encoded p21 protein using isotope-edited NMR.
    Burk SC; Papastavros MZ; McCormick F; Redfield AG
    Proc Natl Acad Sci U S A; 1989 Feb; 86(3):817-20. PubMed ID: 2644645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton NMR studies of transforming and nontransforming H-ras p21 mutants.
    Schlichting I; John J; Frech M; Chardin P; Wittinghofer A; Zimmermann H; Rösch P
    Biochemistry; 1990 Jan; 29(2):504-11. PubMed ID: 2405906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 1H-15N NMR study of human c-Ha-ras protein: biosynthetic incorporation of 15N-labeled amino acids.
    Yamasaki K; Muto Y; Ito Y; Wälchli M; Miyazawa T; Nishimura S; Yokoyama S
    J Biomol NMR; 1992 Jan; 2(1):71-82. PubMed ID: 1422147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the low energy conformations of an oncogenic and a non-oncogenic p21 protein, neither of which binds GTP or GDP.
    Liwo A; Gibson KD; Scheraga HA; Brandt-Rauf PW; Monaco R; Pincus MR
    J Protein Chem; 1994 Feb; 13(2):237-51. PubMed ID: 8060496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure and dynamics of ras p21.GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy.
    Kraulis PJ; Domaille PJ; Campbell-Burk SL; Van Aken T; Laue ED
    Biochemistry; 1994 Mar; 33(12):3515-31. PubMed ID: 8142349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ras-catalyzed hydrolysis of GTP: a new perspective from model studies.
    Maegley KA; Admiraal SJ; Herschlag D
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8160-6. PubMed ID: 8710841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a Gly19-->Val mutant of ram p25, a low Mr GTP-binding protein: loss of GTP/GDP-binding activity in the mutated ram p25.
    Nagata K; Suzuki T; Okano Y; Hamaguchi M; Nozawa Y
    Biochem Biophys Res Commun; 1992 Nov; 189(1):330-5. PubMed ID: 1449488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution NMR studies of fibrinogen-like peptides in solution: structural basis for the bleeding disorder caused by a single mutation of Gly(12) to Val(12) in the A alpha chain of human fibrinogen Rouen.
    Ni F; Konishi Y; Bullock LD; Rivetna MN; Scheraga HA
    Biochemistry; 1989 Apr; 28(7):3106-19. PubMed ID: 2742828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The binding of guanine nucleotide to N-ras p21--a phosphorous and proton magnetic resonance study.
    Grand RJ; Levine BA; Byrd PJ; Gallimore PH
    Oncogene; 1989 Mar; 4(3):355-61. PubMed ID: 2649849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assignment of amide 1H and 15N NMR resonances in detergent-solubilized M13 coat protein: a model for the coat protein dimer.
    Henry GD; Sykes BD
    Biochemistry; 1992 Jun; 31(23):5284-97. PubMed ID: 1606152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the active site of p21 ras by electron spin-echo envelope modulation spectroscopy with selective labeling: comparisons between GDP and GTP forms.
    Halkides CJ; Farrar CT; Larsen RG; Redfield AG; Singel DJ
    Biochemistry; 1994 Apr; 33(13):4019-35. PubMed ID: 8142406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.