These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 21917218)

  • 41. The role of intensity upon pitch perception in cochlear implant recipients.
    Arnoldner C; Kaider A; Hamzavi J
    Laryngoscope; 2006 Oct; 116(10):1760-5. PubMed ID: 17003738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Discrimination of musical pitch with cochlear implants].
    Haumann S; Mühler R; Ziese M; von Specht H
    HNO; 2007 Aug; 55(8):613-9. PubMed ID: 17136415
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coding of the fundamental frequency in continuous interleaved sampling processors for cochlear implants.
    Geurts L; Wouters J
    J Acoust Soc Am; 2001 Feb; 109(2):713-26. PubMed ID: 11248975
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prosody perception and musical pitch discrimination in adults using cochlear implants.
    Kalathottukaren RT; Purdy SC; Ballard E
    Int J Audiol; 2015 Jul; 54(7):444-52. PubMed ID: 25634773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Speech and music perception with the new fine structure speech coding strategy: preliminary results.
    Arnoldner C; Riss D; Brunner M; Durisin M; Baumgartner WD; Hamzavi JS
    Acta Otolaryngol; 2007 Dec; 127(12):1298-303. PubMed ID: 17851892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Off the ear with no loss in speech understanding: comparing the RONDO and the OPUS 2 cochlear implant audio processors.
    Dazert S; Thomas JP; Büchner A; Müller J; Hempel JM; Löwenheim H; Mlynski R
    Eur Arch Otorhinolaryngol; 2017 Mar; 274(3):1391-1395. PubMed ID: 27909888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Randomized Controlled Crossover Study of the Impact of Online Music Training on Pitch and Timbre Perception in Cochlear Implant Users.
    Jiam NT; Deroche ML; Jiradejvong P; Limb CJ
    J Assoc Res Otolaryngol; 2019 Jun; 20(3):247-262. PubMed ID: 30815761
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel speech-processing strategy incorporating tonal information for cochlear implants.
    Lan N; Nie KB; Gao SK; Zeng FG
    IEEE Trans Biomed Eng; 2004 May; 51(5):752-60. PubMed ID: 15132501
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Speech perception with F0mod, a cochlear implant pitch coding strategy.
    Francart T; Osses A; Wouters J
    Int J Audiol; 2015 Jun; 54(6):424-32. PubMed ID: 25697275
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tone discrimination and speech perception benefit in Mandarin-speaking children fit with HiRes fidelity 120 sound processing.
    Chang YT; Yang HM; Lin YH; Liu SH; Wu JL
    Otol Neurotol; 2009 Sep; 30(6):750-7. PubMed ID: 19704359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhancement of temporal cues to pitch in cochlear implants: effects on pitch ranking.
    Vandali AE; van Hoesel RJ
    J Acoust Soc Am; 2012 Jul; 132(1):392-402. PubMed ID: 22779486
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Benefit of a commercially available cochlear implant processor with dual-microphone beamforming: a multi-center study.
    Wolfe J; Parkinson A; Schafer EC; Gilden J; Rehwinkel K; Mansanares J; Coughlan E; Wright J; Torres J; Gannaway S
    Otol Neurotol; 2012 Jun; 33(4):553-60. PubMed ID: 22588233
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pitch and loudness matching of unmodulated and modulated stimuli in cochlear implantees.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Hear Res; 2013 Aug; 302():32-49. PubMed ID: 23685148
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of speech perception performance between Sprint/Esprit 3G and Freedom processors in children implanted with nucleus cochlear implants.
    Santarelli R; Magnavita V; De Filippi R; Ventura L; Genovese E; Arslan E
    Otol Neurotol; 2009 Apr; 30(3):304-12. PubMed ID: 19225440
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The music perception abilities of prelingually deaf children with cochlear implants.
    Stabej KK; Smid L; Gros A; Zargi M; Kosir A; Vatovec J
    Int J Pediatr Otorhinolaryngol; 2012 Oct; 76(10):1392-400. PubMed ID: 22835930
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cochlear implant users rely on tempo rather than on pitch information during perception of musical emotion.
    Caldwell M; Rankin SK; Jiradejvong P; Carver C; Limb CJ
    Cochlear Implants Int; 2015 Sep; 16 Suppl 3():S114-20. PubMed ID: 26561882
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Effects of temporal fine structure stimulation on Mandarin identification in cochlear implant users].
    Qi B; Liu B; Dong R; Krenmayr A; Chen X; Wang S
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2014 Apr; 49(4):294-9. PubMed ID: 24931017
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adapting to the Sound of Music - Development of Music Discrimination Skills in Recently Implanted CI Users.
    Seeberg AB; Haumann NT; Højlund A; Andersen ASF; Faulkner KF; Brattico E; Vuust P; Petersen B
    Trends Hear; 2023; 27():23312165221148035. PubMed ID: 36597692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rhythm processing in cochlear implant-mediated music perception.
    Jiam NT; Limb CJ
    Ann N Y Acad Sci; 2019 Oct; 1453(1):22-28. PubMed ID: 31168793
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Encoding a Melody Using Only Temporal Information for Cochlear-Implant and Normal-Hearing Listeners.
    Todd AE; Mertens G; Van de Heyning P; Landsberger DM
    Trends Hear; 2017; 21():2331216517739745. PubMed ID: 29161987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.