These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 21917392)

  • 41. The effect of physiological noise in phase functional magnetic resonance imaging: from blood oxygen level-dependent effects to direct detection of neuronal currents.
    Hagberg GE; Bianciardi M; Brainovich V; Cassarà AM; Maraviglia B
    Magn Reson Imaging; 2008 Sep; 26(7):1026-40. PubMed ID: 18479875
    [TBL] [Abstract][Full Text] [Related]  

  • 42. fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes.
    van der Zwaag W; Francis S; Head K; Peters A; Gowland P; Morris P; Bowtell R
    Neuroimage; 2009 Oct; 47(4):1425-34. PubMed ID: 19446641
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessment of cerebral hemodynamics and oxygen extraction using dynamic susceptibility contrast and spin echo blood oxygenation level-dependent magnetic resonance imaging: applications to carotid stenosis patients.
    Kavec M; Usenius JP; Tuunanen PI; Rissanen A; Kauppinen RA
    Neuroimage; 2004 May; 22(1):258-67. PubMed ID: 15110016
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The spatial and temporal characteristics of the apparent-diffusion-coefficient-dependent fMRI signal changes during visual stimulation.
    Song AW; Gangstead SL
    J Neural Eng; 2004 Mar; 1(1):32-8. PubMed ID: 15876620
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feasibility of velocity selective arterial spin labeling in functional MRI.
    Wu WC; Wong EC
    J Cereb Blood Flow Metab; 2007 Apr; 27(4):831-8. PubMed ID: 16926843
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disparity of activation onset in sensory cortex from simultaneous auditory and visual stimulation: Differences between perfusion and blood oxygenation level-dependent functional magnetic resonance imaging.
    Liu HL; Feng CM; Li J; Su FC; Li N; Glahn D; Gao JH
    J Magn Reson Imaging; 2005 Feb; 21(2):111-7. PubMed ID: 15666409
    [TBL] [Abstract][Full Text] [Related]  

  • 47. To smooth or not to smooth? ROC analysis of perfusion fMRI data.
    Wang J; Wang Z; Aguirre GK; Detre JA
    Magn Reson Imaging; 2005 Jan; 23(1):75-81. PubMed ID: 15733791
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gradient-echo and spin-echo blood oxygenation level-dependent functional MRI at ultrahigh fields of 9.4 and 15.2 Tesla.
    Han S; Son JP; Cho H; Park JY; Kim SG
    Magn Reson Med; 2019 Feb; 81(2):1237-1246. PubMed ID: 30183108
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Source of nonlinearity in echo-time-dependent BOLD fMRI.
    Jin T; Wang P; Tasker M; Zhao F; Kim SG
    Magn Reson Med; 2006 Jun; 55(6):1281-90. PubMed ID: 16700023
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A cortical vascular model for examining the specificity of the laminar BOLD signal.
    Markuerkiaga I; Barth M; Norris DG
    Neuroimage; 2016 May; 132():491-498. PubMed ID: 26952195
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The impact of vessel size, orientation and intravascular contribution on the neurovascular fingerprint of BOLD bSSFP fMRI.
    Báez-Yánez MG; Ehses P; Mirkes C; Tsai PS; Kleinfeld D; Scheffler K
    Neuroimage; 2017 Dec; 163():13-23. PubMed ID: 28890417
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improved cortical-layer specificity of vascular space occupancy fMRI with slab inversion relative to spin-echo BOLD at 9.4 T.
    Jin T; Kim SG
    Neuroimage; 2008 Mar; 40(1):59-67. PubMed ID: 18249010
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMR
    Huber L; Uludağ K; Möller HE
    Neuroimage; 2019 Aug; 197():742-760. PubMed ID: 28736310
    [TBL] [Abstract][Full Text] [Related]  

  • 54. BOLD contrast and noise characteristics of densely sampled multi-echo fMRI data.
    Chiew M; Graham SJ
    IEEE Trans Med Imaging; 2011 Sep; 30(9):1691-703. PubMed ID: 21511563
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessing the spatial precision of SE and GE-BOLD contrast at 7 Tesla.
    Sanchez Panchuelo RM; Schluppeck D; Harmer J; Bowtell R; Francis S
    Brain Topogr; 2015 Jan; 28(1):62-5. PubMed ID: 25491676
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High-resolution, spin-echo BOLD, and CBF fMRI at 4 and 7 T.
    Duong TQ; Yacoub E; Adriany G; Hu X; Ugurbil K; Vaughan JT; Merkle H; Kim SG
    Magn Reson Med; 2002 Oct; 48(4):589-93. PubMed ID: 12353274
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantifying the intra- and extravascular contributions to spin-echo fMRI at 3 T.
    Jochimsen TH; Norris DG; Mildner T; Möller HE
    Magn Reson Med; 2004 Oct; 52(4):724-32. PubMed ID: 15389950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional localization in the human brain: Gradient-Echo, Spin-Echo, and arterial spin-labeling fMRI compared with neuronavigated TMS.
    Diekhoff S; Uludağ K; Sparing R; Tittgemeyer M; Cavuşoğlu M; von Cramon DY; Grefkes C
    Hum Brain Mapp; 2011 Mar; 32(3):341-57. PubMed ID: 20533563
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional magnetic resonance imaging of the human brain based on signal enhancement by extravascular protons (SEEP fMRI).
    Stroman PW; Tomanek B; Krause V; Frankenstein UN; Malisza KL
    Magn Reson Med; 2003 Mar; 49(3):433-9. PubMed ID: 12594745
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Venous blood effects in spin-echo fMRI of human brain.
    Oja JM; Gillen J; Kauppinen RA; Kraut M; van Zijl PC
    Magn Reson Med; 1999 Oct; 42(4):617-26. PubMed ID: 10502748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.