These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 21917560)
1. Agonist- and hydrogen peroxide-mediated oxidation of the β2 adrenergic receptor: evidence of receptor s-sulfenation as detected by a modified biotin-switch assay. Burns RN; Moniri NH J Pharmacol Exp Ther; 2011 Dec; 339(3):914-21. PubMed ID: 21917560 [TBL] [Abstract][Full Text] [Related]
2. Cysteine redox state regulates human β2-adrenergic receptor binding and function. Rambacher KM; Moniri NH Sci Rep; 2020 Feb; 10(1):2934. PubMed ID: 32076070 [TBL] [Abstract][Full Text] [Related]
3. Agonist-stimulated reactive oxygen species formation regulates beta2-adrenergic receptor signal transduction. Moniri NH; Daaka Y Biochem Pharmacol; 2007 Jun; 74(1):64-73. PubMed ID: 17451656 [TBL] [Abstract][Full Text] [Related]
4. Beta2- and beta3-adrenoceptors activate glucose uptake in chick astrocytes by distinct mechanisms: a mechanism for memory enhancement? Hutchinson DS; Summers RJ; Gibbs ME J Neurochem; 2007 Nov; 103(3):997-1008. PubMed ID: 17680985 [TBL] [Abstract][Full Text] [Related]
5. Agonists and hydrogen peroxide mediate hyperoxidation of β2-adrenergic receptor in airway epithelial cells: Implications for tachyphylaxis to β2-agonists in constrictive airway disorders. Singh K; Teyani RL; Moniri NH Biomed Pharmacother; 2023 Dec; 168():115763. PubMed ID: 37865997 [TBL] [Abstract][Full Text] [Related]
6. β-Adrenergic signaling stimulates osteoclastogenesis via reactive oxygen species. Kondo H; Takeuchi S; Togari A Am J Physiol Endocrinol Metab; 2013 Mar; 304(5):E507-15. PubMed ID: 23169789 [TBL] [Abstract][Full Text] [Related]
7. The mechanism of beta-adrenergic preconditioning: roles for adenosine and ROS during triggering and mediation. Salie R; Moolman JA; Lochner A Basic Res Cardiol; 2012 Sep; 107(5):281. PubMed ID: 22797560 [TBL] [Abstract][Full Text] [Related]
8. Reactive oxygen species are required for β2 adrenergic receptor-β-arrestin interactions and signaling to ERK1/2. Singh M; Moniri NH Biochem Pharmacol; 2012 Sep; 84(5):661-9. PubMed ID: 22728070 [TBL] [Abstract][Full Text] [Related]
9. The β2-adrenergic receptor-ROS signaling axis: An overlooked component of β2AR function? Rambacher KM; Moniri NH Biochem Pharmacol; 2020 Jan; 171():113690. PubMed ID: 31697929 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulations of the effect of the G-protein and diffusible ligands on the β2-adrenergic receptor. Goetz A; Lanig H; Gmeiner P; Clark T J Mol Biol; 2011 Dec; 414(4):611-23. PubMed ID: 22037586 [TBL] [Abstract][Full Text] [Related]
11. Allosteric interactions between the oxytocin receptor and the β2-adrenergic receptor in the modulation of ERK1/2 activation are mediated by heterodimerization. Wrzal PK; Devost D; Pétrin D; Goupil E; Iorio-Morin C; Laporte SA; Zingg HH; Hébert TE Cell Signal; 2012 Jan; 24(1):342-50. PubMed ID: 21963428 [TBL] [Abstract][Full Text] [Related]
12. β2-adrenoceptor agonist-evoked reactive oxygen species generation in mouse atria: implication in delayed inotropic effect. Odnoshivkina UG; Sytchev VI; Nurullin LF; Giniatullin AR; Zefirov AL; Petrov AM Eur J Pharmacol; 2015 Oct; 765():140-53. PubMed ID: 26297975 [TBL] [Abstract][Full Text] [Related]
13. ROS-mediated regulation of β2AR function: Does oxidation play a meaningful role towards β2-agonist tachyphylaxis in airway obstructive diseases? Teyani RL; Moghaddam F; Moniri NH Biochem Pharmacol; 2024 Aug; 226():116403. PubMed ID: 38945277 [TBL] [Abstract][Full Text] [Related]
14. Intracellular cysteine oxidation is modulated by aquaporin-8-mediated hydrogen peroxide channeling in leukaemia cells. Vieceli Dalla Sega F; Prata C; Zambonin L; Angeloni C; Rizzo B; Hrelia S; Fiorentini D Biofactors; 2017 Mar; 43(2):232-242. PubMed ID: 27862460 [TBL] [Abstract][Full Text] [Related]
15. Functional interactions between the oxytocin receptor and the β2-adrenergic receptor: implications for ERK1/2 activation in human myometrial cells. Wrzal PK; Goupil E; Laporte SA; Hébert TE; Zingg HH Cell Signal; 2012 Jan; 24(1):333-41. PubMed ID: 21964067 [TBL] [Abstract][Full Text] [Related]
16. Divergent agonist selectivity in activating β1- and β2-adrenoceptors for G-protein and arrestin coupling. Casella I; Ambrosio C; Grò MC; Molinari P; Costa T Biochem J; 2011 Aug; 438(1):191-202. PubMed ID: 21561432 [TBL] [Abstract][Full Text] [Related]
17. Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Charles RL; Schröder E; May G; Free P; Gaffney PR; Wait R; Begum S; Heads RJ; Eaton P Mol Cell Proteomics; 2007 Sep; 6(9):1473-84. PubMed ID: 17569890 [TBL] [Abstract][Full Text] [Related]
18. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Denu JM; Tanner KG Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949 [TBL] [Abstract][Full Text] [Related]
19. Heterodimerization With 5-HT Song Y; Xu C; Liu J; Li Y; Wang H; Shan D; Wainer IW; Hu X; Zhang Y; Woo AY; Xiao RP Circ Res; 2021 Jan; 128(2):262-277. PubMed ID: 33208036 [TBL] [Abstract][Full Text] [Related]
20. Effect of overexpressed adenylyl cyclase VI on beta 1- and beta 2-adrenoceptor responses in adult rat ventricular myocytes. Stark JC; Haydock SF; Foo R; Brown MJ; Harding SE Br J Pharmacol; 2004 Oct; 143(4):465-76. PubMed ID: 15381636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]