These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 21917850)
1. A single zinc finger optimizes the DNA interactions of the nucleocapsid protein of the yeast retrotransposon Ty3. Chaurasiya KR; Geertsema H; Cristofari G; Darlix JL; Williams MC Nucleic Acids Res; 2012 Jan; 40(2):751-60. PubMed ID: 21917850 [TBL] [Abstract][Full Text] [Related]
2. Rapid kinetics of protein-nucleic acid interaction is a major component of HIV-1 nucleocapsid protein's nucleic acid chaperone function. Cruceanu M; Gorelick RJ; Musier-Forsyth K; Rouzina I; Williams MC J Mol Biol; 2006 Nov; 363(5):867-77. PubMed ID: 16997322 [TBL] [Abstract][Full Text] [Related]
3. The N-terminal zinc finger and flanking basic domains represent the minimal region of the human immunodeficiency virus type-1 nucleocapsid protein for targeting chaperone function. Mitra M; Wang W; Vo MN; Rouzina I; Barany G; Musier-Forsyth K Biochemistry; 2013 Nov; 52(46):8226-36. PubMed ID: 24144434 [TBL] [Abstract][Full Text] [Related]
4. Retroviral nucleocapsid proteins display nonequivalent levels of nucleic acid chaperone activity. Stewart-Maynard KM; Cruceanu M; Wang F; Vo MN; Gorelick RJ; Williams MC; Rouzina I; Musier-Forsyth K J Virol; 2008 Oct; 82(20):10129-42. PubMed ID: 18684831 [TBL] [Abstract][Full Text] [Related]
5. Single aromatic residue location alters nucleic acid binding and chaperone function of FIV nucleocapsid protein. Wu H; Wang W; Naiyer N; Fichtenbaum E; Qualley DF; McCauley MJ; Gorelick RJ; Rouzina I; Musier-Forsyth K; Williams MC Virus Res; 2014 Nov; 193():39-51. PubMed ID: 24915282 [TBL] [Abstract][Full Text] [Related]
6. Aromatic residue mutations reveal direct correlation between HIV-1 nucleocapsid protein's nucleic acid chaperone activity and retroviral replication. Wu H; Mitra M; McCauley MJ; Thomas JA; Rouzina I; Musier-Forsyth K; Williams MC; Gorelick RJ Virus Res; 2013 Feb; 171(2):263-77. PubMed ID: 22814429 [TBL] [Abstract][Full Text] [Related]
7. Specific zinc-finger architecture required for HIV-1 nucleocapsid protein's nucleic acid chaperone function. Williams MC; Gorelick RJ; Musier-Forsyth K Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8614-9. PubMed ID: 12084921 [TBL] [Abstract][Full Text] [Related]
8. Subtle alterations of the native zinc finger structures have dramatic effects on the nucleic acid chaperone activity of human immunodeficiency virus type 1 nucleocapsid protein. Guo J; Wu T; Kane BF; Johnson DG; Henderson LE; Gorelick RJ; Levin JG J Virol; 2002 May; 76(9):4370-8. PubMed ID: 11932404 [TBL] [Abstract][Full Text] [Related]
9. C-terminal domain modulates the nucleic acid chaperone activity of human T-cell leukemia virus type 1 nucleocapsid protein via an electrostatic mechanism. Qualley DF; Stewart-Maynard KM; Wang F; Mitra M; Gorelick RJ; Rouzina I; Williams MC; Musier-Forsyth K J Biol Chem; 2010 Jan; 285(1):295-307. PubMed ID: 19887455 [TBL] [Abstract][Full Text] [Related]
10. The GAG-like protein of the yeast Ty1 retrotransposon contains a nucleic acid chaperone domain analogous to retroviral nucleocapsid proteins. Cristofari G; Ficheux D; Darlix JL J Biol Chem; 2000 Jun; 275(25):19210-7. PubMed ID: 10766747 [TBL] [Abstract][Full Text] [Related]
11. Structure/function mapping of amino acids in the N-terminal zinc finger of the human immunodeficiency virus type 1 nucleocapsid protein: residues responsible for nucleic acid helix destabilizing activity. Narayanan N; Gorelick RJ; DeStefano JJ Biochemistry; 2006 Oct; 45(41):12617-28. PubMed ID: 17029416 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of linker residues modulate the nucleic acid binding properties of the HIV-1 nucleocapsid protein zinc fingers. Zargarian L; Tisné C; Barraud P; Xu X; Morellet N; René B; Mély Y; Fossé P; Mauffret O PLoS One; 2014; 9(7):e102150. PubMed ID: 25029439 [TBL] [Abstract][Full Text] [Related]
13. The HIV-1 nucleocapsid chaperone protein forms locally compacted globules on long double-stranded DNA. Jiang K; Humbert N; K K S; Rouzina I; Mely Y; Westerlund F Nucleic Acids Res; 2021 May; 49(8):4550-4563. PubMed ID: 33872352 [TBL] [Abstract][Full Text] [Related]
14. Characterization of active reverse transcriptase and nucleoprotein complexes of the yeast retrotransposon Ty3 in vitro. Cristofari G; Gabus C; Ficheux D; Bona M; Le Grice SF; Darlix JL J Biol Chem; 1999 Dec; 274(51):36643-8. PubMed ID: 10593967 [TBL] [Abstract][Full Text] [Related]
15. Function of a retrotransposon nucleocapsid protein. Sandmeyer SB; Clemens KA RNA Biol; 2010; 7(6):642-54. PubMed ID: 21189452 [TBL] [Abstract][Full Text] [Related]
16. Human T-cell lymphotropic virus type 1 nucleocapsid protein-induced structural changes in transactivation response DNA hairpin measured by single-molecule fluorescence resonance energy transfer. Darugar Q; Kim H; Gorelick RJ; Landes C J Virol; 2008 Dec; 82(24):12164-71. PubMed ID: 18829758 [TBL] [Abstract][Full Text] [Related]
17. Mechanistic studies of mini-TAR RNA/DNA annealing in the absence and presence of HIV-1 nucleocapsid protein. Vo MN; Barany G; Rouzina I; Musier-Forsyth K J Mol Biol; 2006 Oct; 363(1):244-61. PubMed ID: 16962137 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic differences between HIV-1 and SIV nucleocapsid proteins and cross-species HIV-1 genomic RNA recognition. Post K; Olson ED; Naufer MN; Gorelick RJ; Rouzina I; Williams MC; Musier-Forsyth K; Levin JG Retrovirology; 2016 Dec; 13(1):89. PubMed ID: 28034301 [TBL] [Abstract][Full Text] [Related]
19. Structural determinants of HIV-1 nucleocapsid protein for cTAR DNA binding and destabilization, and correlation with inhibition of self-primed DNA synthesis. Beltz H; Clauss C; Piémont E; Ficheux D; Gorelick RJ; Roques B; Gabus C; Darlix JL; de Rocquigny H; Mély Y J Mol Biol; 2005 May; 348(5):1113-26. PubMed ID: 15854648 [TBL] [Abstract][Full Text] [Related]
20. Differing roles of the N- and C-terminal zinc fingers in human immunodeficiency virus nucleocapsid protein-enhanced nucleic acid annealing. Heath MJ; Derebail SS; Gorelick RJ; DeStefano JJ J Biol Chem; 2003 Aug; 278(33):30755-63. PubMed ID: 12783894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]