These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21917959)

  • 1. The SI strain of measles virus derived from a patient with subacute sclerosing panencephalitis possesses typical genome alterations and unique amino acid changes that modulate receptor specificity and reduce membrane fusion activity.
    Seki F; Yamada K; Nakatsu Y; Okamura K; Yanagi Y; Nakayama T; Komase K; Takeda M
    J Virol; 2011 Nov; 85(22):11871-82. PubMed ID: 21917959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid substitutions in the heptad repeat A and C regions of the F protein responsible for neurovirulence of measles virus Osaka-1 strain from a patient with subacute sclerosing panencephalitis.
    Ayata M; Tanaka M; Kameoka K; Kuwamura M; Takeuchi K; Takeda M; Kanou K; Ogura H
    Virology; 2016 Jan; 487():141-9. PubMed ID: 26524513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the alterations in the fusion protein of measles virus isolated from brains of patients with subacute sclerosing panencephalitis on syncytium formation.
    Ayata M; Shingai M; Ning X; Matsumoto M; Seya T; Otani S; Seto T; Ohgimoto S; Ogura H
    Virus Res; 2007 Dec; 130(1-2):260-8. PubMed ID: 17825451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations and diversity in the cytoplasmic tail of the fusion protein of subacute sclerosing panencephalitis virus strains isolated in Osaka, Japan.
    Ning X; Ayata M; Kimura M; Komase K; Furukawa K; Seto T; Ito N; Shingai M; Matsunaga I; Yamano T; Ogura H
    Virus Res; 2002 Jun; 86(1-2):123-31. PubMed ID: 12076836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional properties of measles virus proteins derived from a subacute sclerosing panencephalitis patient who received repeated remdesivir treatments.
    Schmitz KS; Handrejk K; Liepina L; Bauer L; Haas GD; van Puijfelik F; Veldhuis Kroeze EJB; Riekstina M; Strautmanis J; Cao H; Verdijk RM; GeurtsvanKessel CH; van Boheemen S; van Riel D; Lee B; Porotto M; de Swart RL; de Vries RD
    J Virol; 2024 Mar; 98(3):e0187423. PubMed ID: 38329336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The F gene of the Osaka-2 strain of measles virus derived from a case of subacute sclerosing panencephalitis is a major determinant of neurovirulence.
    Ayata M; Takeuchi K; Takeda M; Ohgimoto S; Kato S; Sharma LB; Tanaka M; Kuwamura M; Ishida H; Ogura H
    J Virol; 2010 Nov; 84(21):11189-99. PubMed ID: 20719945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed activation of altered fusion glycoprotein in a chronic measles virus variant that causes subacute sclerosing panencephalitis.
    Watanabe M; Wang A; Sheng J; Gombart AF; Ayata M; Ueda S; Hirano A; Wong TC
    J Neurovirol; 1995 Jun; 1(2):177-88. PubMed ID: 9222356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed activation of altered fusion glycoprotein in a chronic measles virus variant that causes subacute sclerosing panencephalitis.
    Watanabe M; Wang A; Sheng J; Gombart AF; Ayata M; Ueda S; Hirano A; Wong TC
    J Neurovirol; 1995 Dec; 1(5-6):412-23. PubMed ID: 9222385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein.
    Sato Y; Watanabe S; Fukuda Y; Hashiguchi T; Yanagi Y; Ohno S
    J Virol; 2018 Mar; 92(6):. PubMed ID: 29298883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of a Subacute Sclerosing Panencephalitis Genotype B3 Virus from the 2009-2010 South African Measles Epidemic Shows That Hyperfusogenic F Proteins Contribute to Measles Virus Infection in the Brain.
    Angius F; Smuts H; Rybkina K; Stelitano D; Eley B; Wilmshurst J; Ferren M; Lalande A; Mathieu C; Moscona A; Horvat B; Hashiguchi T; Porotto M; Hardie D
    J Virol; 2019 Feb; 93(4):. PubMed ID: 30487282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of measles virus strains causing subacute sclerosing panencephalitis in France in 1977 and 2007.
    Moulin E; Beal V; Jeantet D; Horvat B; Wild TF; Waku-Kouomou D
    J Med Virol; 2011 Sep; 83(9):1614-23. PubMed ID: 21739453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. M protein of subacute sclerosing panencephalitis virus, synergistically with the F protein, plays a crucial role in viral neuropathogenicity.
    Satoh Y; Higuchi K; Nishikawa D; Wakimoto H; Konami M; Sakamoto K; Kitagawa Y; Gotoh B; Jiang DP; Hotta H; Itoh M
    J Gen Virol; 2021 Oct; 102(10):. PubMed ID: 34643483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phosphoprotein genes of measles viruses from subacute sclerosing panencephalitis cases encode functional as well as non-functional proteins and display reduced editing.
    Millar EL; Rennick LJ; Weissbrich B; Schneider-Schaulies J; Duprex WP; Rima BK
    Virus Res; 2016 Jan; 211():29-37. PubMed ID: 26428304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CADM1 and CADM2 Trigger Neuropathogenic Measles Virus-Mediated Membrane Fusion by Acting in
    Shirogane Y; Takemoto R; Suzuki T; Kameda T; Nakashima K; Hashiguchi T; Yanagi Y
    J Virol; 2021 Jun; 95(14):e0052821. PubMed ID: 33910952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor use by vesicular stomatitis virus pseudotypes with glycoproteins of defective variants of measles virus isolated from brains of patients with subacute sclerosing panencephalitis.
    Shingai M; Ayata M; Ishida H; Matsunaga I; Katayama Y; Seya T; Tatsuo H; Yanagi Y; Ogura H
    J Gen Virol; 2003 Aug; 84(Pt 8):2133-2143. PubMed ID: 12867645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak
    Shirogane Y; Hashiguchi T; Yanagi Y
    J Virol; 2020 Jan; 94(2):. PubMed ID: 31619560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The first genetic characterization of a D4 measles virus strain derived from a patient with subacute sclerosing panencephalitis.
    Ivancic-Jelecki J; Baricevic M; Santak M; Harcet M; Tešović G; Marusic Della Marina B; Forcic D
    Infect Genet Evol; 2013 Jul; 17():71-8. PubMed ID: 23542094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular analysis of measles virus genome derived from SSPE and acute measles patients in Papua, New Guinea.
    Miki K; Komase K; Mgone CS; Kawanishi R; Iijima M; Mgone JM; Asuo PG; Alpers MP; Takasu T; Mizutani T
    J Med Virol; 2002 Sep; 68(1):105-12. PubMed ID: 12210437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of viral RNA polymerase activity is necessary for persistent infection during the transformation of measles virus into SSPE virus.
    Sakamoto K; Konami M; Kameda S; Satoh Y; Wakimoto H; Kitagawa Y; Gotoh B; Jiang DP; Hotta H; Itoh M
    PLoS Pathog; 2023 Jul; 19(7):e1011528. PubMed ID: 37494386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Peptide Derived from the Fusion Protein Heptad Repeat Inhibits Replication of Subacute Sclerosing Panencephalitis Virus In Vitro and In Vivo.
    Watanabe M; Hashimoto K; Abe Y; Kodama EN; Nabika R; Oishi S; Ohara S; Sato M; Kawasaki Y; Fujii N; Hosoya M
    PLoS One; 2016; 11(9):e0162823. PubMed ID: 27612283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.