These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21918621)

  • 41. Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength.
    Zhu MM; Rempel DL; Zhao J; Giblin DE; Gross ML
    Biochemistry; 2003 Dec; 42(51):15388-97. PubMed ID: 14690449
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ca2+ regulation of ion transport in the Na+/Ca2+ exchanger.
    Hilge M
    J Biol Chem; 2012 Sep; 287(38):31641-9. PubMed ID: 22822067
    [TBL] [Abstract][Full Text] [Related]  

  • 43. FURSMASA: a new approach to rapid scoring functions that uses a MD-averaged potential energy grid and a solvent-accessible surface area term with parameters GA fit to experimental data.
    Pearlman DA; Rao BG; Charifson P
    Proteins; 2008 May; 71(3):1519-38. PubMed ID: 18300249
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Binding of divalent metal ions to calcium-free peroxidase: thermodynamic and kinetic studies.
    Nazari K; Kelay V; Mahmoudi A; Hashemianzadeh SM
    Chem Biodivers; 2012 Sep; 9(9):1806-22. PubMed ID: 22976971
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set.
    Santos KB; Guedes IA; Karl ALM; Dardenne LE
    J Chem Inf Model; 2020 Feb; 60(2):667-683. PubMed ID: 31922754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Towards predictive ligand design with free-energy based computational methods?
    Foloppe N; Hubbard R
    Curr Med Chem; 2006; 13(29):3583-608. PubMed ID: 17168725
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of DNA-binding protein target sequences by physical effective energy functions: free energy analysis of lambda repressor-DNA complexes.
    Moroni E; Caselle M; Fogolari F
    BMC Struct Biol; 2007 Sep; 7():61. PubMed ID: 17900341
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ion cyclotron resonance spectroscopy. Cyclotron double resonance provides a new technique for the study of ion-molecule reaction mechanisms.
    Baldeschwieler JD
    Science; 1968 Jan; 159(3812):263-73. PubMed ID: 4863791
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In silico prediction and analysis of Caenorhabditis EF-hand containing proteins.
    Kumar M; Ahmad S; Ahmad E; Saifi MA; Khan RH
    PLoS One; 2012; 7(5):e36770. PubMed ID: 22701514
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DeepBindRG: a deep learning based method for estimating effective protein-ligand affinity.
    Zhang H; Liao L; Saravanan KM; Yin P; Wei Y
    PeerJ; 2019; 7():e7362. PubMed ID: 31380152
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method.
    Mazanetz MP; Ichihara O; Law RJ; Whittaker M
    J Cheminform; 2011 Jan; 3(1):2. PubMed ID: 21219630
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A displaced-solvent functional analysis of model hydrophobic enclosures.
    Abel R; Wang L; Friesner RA; Berne BJ
    J Chem Theory Comput; 2010 Aug; 6(9):2924-2934. PubMed ID: 21135914
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chaos-embedded particle swarm optimization approach for protein-ligand docking and virtual screening.
    Tai HK; Jusoh SA; Siu SWI
    J Cheminform; 2018 Dec; 10(1):62. PubMed ID: 30552524
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal ions and phosphatidylinositol 4,5-bisphosphate as interacting effectors of α-type plant phospholipase D.
    Dreßler L; Michel F; Thondorf I; Mansfeld J; Golbik R; Ulbrich-Hofmann R
    Phytochemistry; 2017 Jun; 138():57-64. PubMed ID: 28283189
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A stability concept for metal ion coordination to single-stranded nucleic acids and affinities of individual sites.
    Sigel RK; Sigel H
    Acc Chem Res; 2010 Jul; 43(7):974-84. PubMed ID: 20235593
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Docking small peptides remains a great challenge: an assessment using AutoDock Vina.
    Rentzsch R; Renard BY
    Brief Bioinform; 2015 Nov; 16(6):1045-56. PubMed ID: 25900849
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multitask deep networks with grid featurization achieve improved scoring performance for protein-ligand binding.
    Xie L; Xu L; Chang S; Xu X; Meng L
    Chem Biol Drug Des; 2020 Sep; 96(3):973-983. PubMed ID: 33058459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings.
    Eberhardt J; Santos-Martins D; Tillack AF; Forli S
    J Chem Inf Model; 2021 Aug; 61(8):3891-3898. PubMed ID: 34278794
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing scoring functions for protein-ligand interactions.
    Ferrara P; Gohlke H; Price DJ; Klebe G; Brooks CL
    J Med Chem; 2004 Jun; 47(12):3032-47. PubMed ID: 15163185
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improving the accuracy of high-throughput protein-protein affinity prediction may require better training data.
    Dias R; Kolaczkowski B
    BMC Bioinformatics; 2017 Mar; 18(Suppl 5):102. PubMed ID: 28361672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.