These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 21919007)
1. Reduction of diazinon and dimethoate in apple juice by pulsed electric field treatment. Zhang Y; Hou Y; Zhang Y; Chen J; Chen F; Liao X; Hu X J Sci Food Agric; 2012 Mar; 92(4):743-50. PubMed ID: 21919007 [TBL] [Abstract][Full Text] [Related]
2. Degradation of diazinon in apple juice by ultrasonic treatment. Zhang Y; Zhang W; Liao X; Zhang J; Hou Y; Xiao Z; Chen F; Hu X Ultrason Sonochem; 2010 Apr; 17(4):662-8. PubMed ID: 20061173 [TBL] [Abstract][Full Text] [Related]
3. Degradation behavior and products of malathion and chlorpyrifos spiked in apple juice by ultrasonic treatment. Zhang Y; Xiao Z; Chen F; Ge Y; Wu J; Hu X Ultrason Sonochem; 2010 Jan; 17(1):72-7. PubMed ID: 19560957 [TBL] [Abstract][Full Text] [Related]
4. The presence of dialkylphosphates in fresh fruit juices: implication for organophosphorus pesticide exposure and risk assessments. Lu C; Bravo R; Caltabiano LM; Irish RM; Weerasekera G; Barr DB J Toxicol Environ Health A; 2005 Feb; 68(3):209-27. PubMed ID: 15762180 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of patulin degradation in model solution, apple cider and apple juice by ultraviolet radiation. Zhu Y; Koutchma T; Warriner K; Shao S; Zhou T Food Sci Technol Int; 2013 Aug; 19(4):291-303. PubMed ID: 23729413 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic removal of off-flavors from apple juice. Schroeder M; Pöllinger-Zierler B; Aichernig N; Siegmund B; Guebitz GM J Agric Food Chem; 2008 Apr; 56(7):2485-9. PubMed ID: 18318500 [TBL] [Abstract][Full Text] [Related]
7. Comparative study of pulsed electric field and thermal processing of apple juice with particular consideration of juice quality and enzyme deactivation. Schilling S; Schmid S; Jäger H; Ludwig M; Dietrich H; Toepfl S; Knorr D; Neidhart S; Schieber A; Carle R J Agric Food Chem; 2008 Jun; 56(12):4545-54. PubMed ID: 18494487 [TBL] [Abstract][Full Text] [Related]
8. Effect of home processing on the distribution and reduction of pesticide residues in apples. Kong Z; Shan W; Dong F; Liu X; Xu J; Li M; Zheng Y Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012 Aug; 29(8):1280-7. PubMed ID: 22738391 [TBL] [Abstract][Full Text] [Related]
9. The degradation of chlorpyrifos and diazinon in aqueous solution by ultrasonic irradiation: effect of parameters and degradation pathway. Zhang Y; Hou Y; Chen F; Xiao Z; Zhang J; Hu X Chemosphere; 2011 Feb; 82(8):1109-15. PubMed ID: 21176942 [TBL] [Abstract][Full Text] [Related]
10. Effect of sonication on eliminating of phorate in apple juice. Zhang Y; Zhang Z; Chen F; Zhang H; Hu X Ultrason Sonochem; 2012 Jan; 19(1):43-8. PubMed ID: 21669544 [TBL] [Abstract][Full Text] [Related]
11. Multi-walled carbon nanotubes as efficient solid-phase extraction materials of organophosphorus pesticides from apple, grape, orange and pineapple fruit juices. Ravelo-Pérez LM; Hernández-Borges J; Rodríguez-Delgado MA J Chromatogr A; 2008 Nov; 1211(1-2):33-42. PubMed ID: 18849040 [TBL] [Abstract][Full Text] [Related]
12. Activity and concentration of polyphenolic antioxidants in apple juice. 2. Effect of novel production methods. van der Sluis AA; Dekker M; Skrede G; Jongen WM J Agric Food Chem; 2004 May; 52(10):2840-8. PubMed ID: 15137823 [TBL] [Abstract][Full Text] [Related]
13. Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. Martínez Viedma P; Sobrino López A; Ben Omar N; Abriouel H; Lucas López R; Valdivia E; Martín Belloso O; Gálvez A Int J Food Microbiol; 2008 Dec; 128(2):244-9. PubMed ID: 18829125 [TBL] [Abstract][Full Text] [Related]
14. Organophosphate levels in apple composites and individual apples from a treated Canadian orchard. Rawn DF; Quade SC; Shields JB; Conca G; Sun WF; Lacroix GM; Smith M; Fouquet A; Bélanger A J Agric Food Chem; 2006 Mar; 54(5):1943-8. PubMed ID: 16506857 [TBL] [Abstract][Full Text] [Related]
15. Distribution of multiple pesticide residues in apple segments after home processing. Rasmusssen RR; Poulsen ME; Hansen HC Food Addit Contam; 2003 Nov; 20(11):1044-63. PubMed ID: 14668155 [TBL] [Abstract][Full Text] [Related]
16. Optimization of clean-up procedure for patulin determination in apple juice and apple purees by liquid chromatography. Valle-Algarra FM; Mateo EM; Gimeno-Adelantado JV; Mateo-Castro R; Jiménez M Talanta; 2009 Dec; 80(2):636-42. PubMed ID: 19836531 [TBL] [Abstract][Full Text] [Related]
17. Preliminary studies for the differentiation of apple juice samples by chemometric analysis of solid-phase microextraction-gas chromatographic data. Reid LM; O'Donnell CP; Kelly JD; Downey G J Agric Food Chem; 2004 Nov; 52(23):6891-6. PubMed ID: 15537292 [TBL] [Abstract][Full Text] [Related]
18. Liquid chromatography-tandem mass spectrometry method for the simultaneous quantitative determination of the organophosphorus pesticides dimethoate, fenthion, diazinon and chlorpyrifos in human blood. Salm P; Taylor PJ; Roberts D; de Silva J J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Feb; 877(5-6):568-74. PubMed ID: 19167275 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of organophosphorus pesticides in tropical soils: The case of karst landscape of northwestern Yucatan. Alfonso LF; Germán GV; María Del Carmen PC; Hossein G Chemosphere; 2017 Jan; 166():292-299. PubMed ID: 27700995 [TBL] [Abstract][Full Text] [Related]
20. Detection of apple juice adulteration using near-infrared transflectance spectroscopy. León L; Kelly JD; Downey G Appl Spectrosc; 2005 May; 59(5):593-9. PubMed ID: 15969804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]