BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 2191903)

  • 1. Bioreductive activation of quinones: redox properties and thiol reactivity.
    Wardman P
    Free Radic Res Commun; 1990; 8(4-6):219-29. PubMed ID: 2191903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioreductive activation of quinones: a mixed blessing.
    Koster AS
    Pharm Weekbl Sci; 1991 Jun; 13(3):123-6. PubMed ID: 1923701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes.
    Gant TW; Rao DN; Mason RP; Cohen GM
    Chem Biol Interact; 1988; 65(2):157-73. PubMed ID: 2835188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymic- and thiol-mediated activation of halogen-substituted diaziridinylbenzoquinones: redox transitions of the semiquinone and semiquinone-thioether species.
    Goin J; Giulivi C; Butler J; Cadenas E
    Free Radic Biol Med; 1995 Mar; 18(3):525-36. PubMed ID: 9101243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivity of thiols towards derivatives of 2- and 6-methyl-1,4-naphthoquinone bioreductive alkylating agents.
    Wilson I; Wardman P; Lin TS; Sartorelli AC
    Chem Biol Interact; 1987 Mar; 61(3):229-40. PubMed ID: 3568193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiquinone anion radicals formed by the reaction of quinones with glutathione or amino acids.
    Grant TW; Doherty MD; Odowole D; Sales KD; Cohen GM
    FEBS Lett; 1986 Jun; 201(2):296-300. PubMed ID: 3011514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox properties and thiol reactivity of geldanamycin and its analogues in aqueous solutions.
    Samuni A; Goldstein S
    J Phys Chem B; 2012 Jun; 116(22):6404-10. PubMed ID: 22591491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiols oxidation and covalent binding of BSA by cyclolignanic quinones are enhanced by the magnesium cation.
    Alegria AE; Sanchez-Cruz P; Kumar A; Garcia C; Gonzalez FA; Orellano A; Zayas B; Gordaliza M
    Free Radic Res; 2008 Jan; 42(1):70-81. PubMed ID: 18324525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals.
    Folkes LK; Christlieb M; Madej E; Stratford MR; Wardman P
    Chem Res Toxicol; 2007 Dec; 20(12):1885-94. PubMed ID: 17941699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms of quinone cytotoxicity.
    O'Brien PJ
    Chem Biol Interact; 1991; 80(1):1-41. PubMed ID: 1913977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free radical formation by antitumor quinones.
    Powis G
    Free Radic Biol Med; 1989; 6(1):63-101. PubMed ID: 2492250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation.
    Giulivi C; Cadenas E
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox and addition chemistry of quinoid compounds and its biological implications.
    Brunmark A; Cadenas E
    Free Radic Biol Med; 1989; 7(4):435-77. PubMed ID: 2691341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox conversions of methemoglobin during redox cycling of quinones and aromatic nitrocompounds.
    CĂ©nas N; Ollinger K
    Arch Biochem Biophys; 1994 Nov; 315(1):170-6. PubMed ID: 7979395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling and measuring redox cycling and cytotoxicity of quinones.
    Hughes L; Wingate J; Griffith R; Aitken RJ
    Drug Metab Lett; 2007 Dec; 1(4):245-53. PubMed ID: 19356050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The redox-sensing regulator YodB senses quinones and diamide via a thiol-disulfide switch in Bacillus subtilis.
    Chi BK; Albrecht D; Gronau K; Becher D; Hecker M; Antelmann H
    Proteomics; 2010 Sep; 10(17):3155-64. PubMed ID: 20652907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered thiol and calcium homeostasis in oxidative hepatocellular injury.
    Bellomo G; Orrenius S
    Hepatology; 1985; 5(5):876-82. PubMed ID: 4029898
    [No Abstract]   [Full Text] [Related]  

  • 18. Cellular pharmacology of quinone bioreductive alkylating agents.
    Rockwell S; Sartorelli AC; Tomasz M; Kennedy KA
    Cancer Metastasis Rev; 1993 Jun; 12(2):165-76. PubMed ID: 8375019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: an ESR study.
    Takahashi N; Schreiber J; Fischer V; Mason RP
    Arch Biochem Biophys; 1987 Jan; 252(1):41-8. PubMed ID: 3028260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of carbon tetrachloride by thiol reductants in the presence of quinone compounds.
    Doong RA; Chiang HC
    Environ Sci Technol; 2005 Oct; 39(19):7460-8. PubMed ID: 16245816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.