These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 21919035)

  • 1. Neuron-glia interactions in glutamatergic neurotransmission: roles of oxidative and glycolytic adenosine triphosphate as energy source.
    Schousboe A; Sickmann HM; Bak LK; Schousboe I; Jajo FS; Faek SA; Waagepetersen HS
    J Neurosci Res; 2011 Dec; 89(12):1926-34. PubMed ID: 21919035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission.
    Sickmann HM; Walls AB; Schousboe A; Bouman SD; Waagepetersen HS
    J Neurochem; 2009 May; 109 Suppl 1():80-6. PubMed ID: 19393012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Astrocytes and energy metabolism.
    Prebil M; Jensen J; Zorec R; Kreft M
    Arch Physiol Biochem; 2011 May; 117(2):64-9. PubMed ID: 21214428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy sources for glutamate neurotransmission in the retina: absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia.
    Xu Y; Ola MS; Berkich DA; Gardner TW; Barber AJ; Palmieri F; Hutson SM; LaNoue KF
    J Neurochem; 2007 Apr; 101(1):120-31. PubMed ID: 17394462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of glutamine and neuronal glutamate uptake in glutamate homeostasis and synthesis during vesicular release in cultured glutamatergic neurons.
    Waagepetersen HS; Qu H; Sonnewald U; Shimamoto K; Schousboe A
    Neurochem Int; 2005 Jul; 47(1-2):92-102. PubMed ID: 15921825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust glycogen shunt activity in astrocytes: Effects of glutamatergic and adrenergic agents.
    Walls AB; Heimbürger CM; Bouman SD; Schousboe A; Waagepetersen HS
    Neuroscience; 2009 Jan; 158(1):284-92. PubMed ID: 19000744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
    Hertz L; Peng L; Dienel GA
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaching out beyond the synapse: glial intercellular waves coordinate metabolism.
    Charles A
    Sci STKE; 2005 Feb; 2005(270):pe6. PubMed ID: 15701894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained metabolic inhibition induces an increase in the content and phosphorylation of the NR2B subunit of N-methyl-D-aspartate receptors and a decrease in glutamate transport in the rat hippocampus in vivo.
    Camacho A; Montiel T; Massieu L
    Neuroscience; 2007 Mar; 145(3):873-86. PubMed ID: 17331654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase.
    Ikemoto A; Bole DG; Ueda T
    J Biol Chem; 2003 Feb; 278(8):5929-40. PubMed ID: 12488440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K
    DiNuzzo M; Giove F; Maraviglia B; Mangia S
    Neurochem Res; 2017 Jan; 42(1):202-216. PubMed ID: 27628293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The redox switch/redox coupling hypothesis.
    Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML
    Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes.
    Bal-Price A; Moneer Z; Brown GC
    Glia; 2002 Dec; 40(3):312-23. PubMed ID: 12420311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycolytic flux controls D-serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes.
    Suzuki M; Sasabe J; Miyoshi Y; Kuwasako K; Muto Y; Hamase K; Matsuoka M; Imanishi N; Aiso S
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):E2217-24. PubMed ID: 25870284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuron-astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy.
    Escartin C; Valette J; Lebon V; Bonvento G
    J Neurochem; 2006 Oct; 99(2):393-401. PubMed ID: 17029594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The metabolism of C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats.
    Thoren AE; Helps SC; Nilsson M; Sims NR
    J Neurochem; 2006 May; 97(4):968-78. PubMed ID: 16606370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of lactate in brain metabolism.
    Fillenz M
    Neurochem Int; 2005 Nov; 47(6):413-7. PubMed ID: 16039756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival.
    Håberg A; Qu H; Saether O; Unsgård G; Haraldseth O; Sonnewald U
    J Cereb Blood Flow Metab; 2001 Dec; 21(12):1451-63. PubMed ID: 11740207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamatergic neurotransmission and protein kinase C play a role in neuron-glia communication during the development of methamphetamine-induced psychological dependence.
    Miyatake M; Narita M; Shibasaki M; Nakamura A; Suzuki T
    Eur J Neurosci; 2005 Sep; 22(6):1476-88. PubMed ID: 16190901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA Receptors in glia.
    Verkhratsky A; Kirchhoff F
    Neuroscientist; 2007 Feb; 13(1):28-37. PubMed ID: 17229973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.