BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21919106)

  • 1. Preparation of microporous melamine-based polymer networks in an anhydrous high-temperature miniemulsion.
    Schwab MG; Crespy D; Feng X; Landfester K; Müllen K
    Macromol Rapid Commun; 2011 Nov; 32(22):1798-803. PubMed ID: 21919106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of nanosized (<20 nm) polymer particles by radical polymerization in miniemulsion employing in situ surfactant formation.
    Guo Y; Zetterlund PB
    Macromol Rapid Commun; 2011 Oct; 32(20):1669-75. PubMed ID: 21751279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcapsules with macroholes prepared by the competitive adsorption of surfactants on emulsion droplet surfaces.
    Kamio E; Yonemura S; Ono T; Yoshizawa H
    Langmuir; 2008 Dec; 24(23):13287-98. PubMed ID: 18666759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments of molecularly imprinted polymer in CEC.
    Huang YP; Liu ZS; Zheng C; Gao RY
    Electrophoresis; 2009 Jan; 30(1):155-62. PubMed ID: 19072928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry.
    Schwab MG; Fassbender B; Spiess HW; Thomas A; Feng X; Müllen K
    J Am Chem Soc; 2009 Jun; 131(21):7216-7. PubMed ID: 19469570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic nuclear polarization NMR spectroscopy allows high-throughput characterization of microporous organic polymers.
    Blanc F; Chong SY; McDonald TO; Adams DJ; Pawsey S; Caporini MA; Cooper AI
    J Am Chem Soc; 2013 Oct; 135(41):15290-3. PubMed ID: 24028380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution.
    Kailasam K; Schmidt J; Bildirir H; Zhang G; Blechert S; Wang X; Thomas A
    Macromol Rapid Commun; 2013 Jun; 34(12):1008-13. PubMed ID: 23649734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of structured polygonal nanoparticles by phase-separated comb-like polymers.
    Weiss VM; Naolou T; Amado E; Busse K; Mäder K; Kressler J
    Macromol Rapid Commun; 2012 Jan; 33(1):35-40. PubMed ID: 22105980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel approaches to polymer blends based on polymer nanoparticles.
    Kietzke T; Neher D; Landfester K; Montenegro R; Güntner R; Scherf U
    Nat Mater; 2003 Jun; 2(6):408-12. PubMed ID: 12738959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroporous polymer thin film prepared from temporarily stabilized water-in-oil emulsion.
    Ham HT; Chung IJ; Choi YS; Lee SH; Kim SO
    J Phys Chem B; 2006 Jul; 110(28):13959-64. PubMed ID: 16836347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation.
    Calderó G; García-Celma MJ; Solans C
    J Colloid Interface Sci; 2011 Jan; 353(2):406-11. PubMed ID: 20971472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of gold nanoparticle catalysts based on a new water-soluble ionic polymer.
    Biondi I; Laurenczy G; Dyson PJ
    Inorg Chem; 2011 Sep; 50(17):8038-45. PubMed ID: 21793580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, and miniemulsion polymerization of new phosphonate surfmers and application studies of the resulting nanoparticles as model systems for biomimetic mineralization and cellular uptake.
    Sauer R; Froimowicz P; Schöller K; Cramer JM; Ritz S; Mailänder V; Landfester K
    Chemistry; 2012 Apr; 18(17):5201-12. PubMed ID: 22461235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniemulsion synthesis of metal-oxo cluster containing copolymer nanobeads.
    Pablico MH; Mertzman JE; Japp EA; Boncher WL; Nishida M; Van Keuren E; Lofland SE; Dollahon N; Rubinson JF; Holman KT; Stoll SL
    Langmuir; 2011 Oct; 27(20):12575-84. PubMed ID: 21866918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium nanoparticles captured in microporous polymers: a tailor-made catalyst for heterogeneous carbon cross-coupling reactions.
    Ogasawara S; Kato S
    J Am Chem Soc; 2010 Apr; 132(13):4608-13. PubMed ID: 20225817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content.
    Budhian A; Siegel SJ; Winey KI
    Int J Pharm; 2007 May; 336(2):367-75. PubMed ID: 17207944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-molecule/polymer recognition triggers aqueous-phase assembly and encapsulation.
    Zhou Z; Bong D
    Langmuir; 2013 Jan; 29(1):144-50. PubMed ID: 23205819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning microcavities in thermally rearranged polymer membranes for CO2 capture.
    Han SH; Kwon HJ; Kim KY; Seong JG; Park CH; Kim S; Doherty CM; Thornton AW; Hill AJ; Lozano AE; Berchtold KA; Lee YM
    Phys Chem Chem Phys; 2012 Apr; 14(13):4365-73. PubMed ID: 22270868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles.
    Klapper M; Nenov S; Haschick R; Müller K; Müllen K
    Acc Chem Res; 2008 Sep; 41(9):1190-201. PubMed ID: 18759463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method for the preparation of concentrated translucent polymer nanolatexes from emulsion polymerization.
    Smeets NM; Moraes RP; Wood JA; McKenna TF
    Langmuir; 2011 Jan; 27(2):575-81. PubMed ID: 21142098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.