These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21919128)

  • 1. Assessment of collagen fibril spacing in relation to selected region of interest (ROI) on electron micrographs--application to the mammalian corneal stroma.
    Doughty MJ
    Microsc Res Tech; 2012 Apr; 75(4):474-83. PubMed ID: 21919128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Averaged spacing and 2-d organization of collagen fibrils in the posterior cornea of the rabbit eye assessed by transmission electron microscopy.
    Doughty MJ
    Curr Eye Res; 2014 Apr; 39(4):329-39. PubMed ID: 23841461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution and reproducibility of measures of the diameter of small collagen fibrils by transmission electron microscopy--application to the rabbit corneal stroma.
    Doughty MJ; Bergmanson JP
    Micron; 2005; 36(4):331-43. PubMed ID: 15857772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the apparent intra- and inter-sample variability in the collagen fibril diameter in the posterior corneal stroma of rabbits. A transmission electron microscopy study.
    Doughty MJ; Bergmanson JP
    Ophthalmic Res; 2006; 38(6):335-42. PubMed ID: 17047410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Options for determination of 2-D distribution of collagen fibrils in transmission electron micrographs--application to the mammalian corneal stroma.
    Doughty MJ
    Microsc Res Tech; 2011 Feb; 74(2):184-95. PubMed ID: 20564523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of stromal collagen fibrils and proteoglycans in the developing zebrafish cornea.
    Akhtar S; Schonthaler HB; Bron AJ; Dahm R
    Acta Ophthalmol; 2008 Sep; 86(6):655-65. PubMed ID: 18221494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrastructure in anterior and posterior stroma of perfused human and rabbit corneas. Relation to transparency.
    Freund DE; McCally RL; Farrell RA; Cristol SM; L'Hernault NL; Edelhauser HF
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1508-23. PubMed ID: 7601631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional supramolecular organization of the extracellular matrix in human and rabbit corneal stroma, as revealed by ultrarapid-freezing and deep-etching methods.
    Hirsch M; Prenant G; Renard G
    Exp Eye Res; 2001 Feb; 72(2):123-35. PubMed ID: 11161728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the collagen fibril distribution in the medial collateral ligament in a rat knee model.
    Fung DT; Ng GY; Leung MC; Tay DK
    Connect Tissue Res; 2003; 44(1):2-11. PubMed ID: 12945799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction and transmission electron microscopy of Morquio syndrome type A cornea: a structural analysis.
    Rawe IM; Leonard DW; Meek KM; Zabel RW
    Cornea; 1997 May; 16(3):369-76. PubMed ID: 9143815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the ultrastructure of fibrous long spacing collagen by parallel atomic force and transmission electron microscopy.
    Lin AC; Goh MC
    Proteins; 2002 Nov; 49(3):378-84. PubMed ID: 12360527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of processing methods for transmission electron microscopy on corneal collagen fibrils diameter and spacing.
    Akhtar S
    Microsc Res Tech; 2012 Oct; 75(10):1420-4. PubMed ID: 22648981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue.
    Matteini P; Rossi F; Menabuoni L; Pini R
    Lasers Surg Med; 2007 Aug; 39(7):597-604. PubMed ID: 17868101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural analyses of enzyme-treated microfibrils in rabbit corneal stroma.
    Carlson EC; Waring GO
    Invest Ophthalmol Vis Sci; 1988 Apr; 29(4):578-85. PubMed ID: 3281915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The precision of lateral size control in the assembly of corneal collagen fibrils.
    Holmes DF; Kadler KE
    J Mol Biol; 2005 Jan; 345(4):773-84. PubMed ID: 15588825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collagen fibrils in the human corneal stroma: structure and aging.
    Daxer A; Misof K; Grabner B; Ettl A; Fratzl P
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):644-8. PubMed ID: 9501878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental formation of 100 nm periodic fibrils in the mouse corneal stroma and trabecular meshwork.
    Hirano K; Kobayashi M; Kobayashi K; Hoshino T; Awaya S
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):869-74. PubMed ID: 2722443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure of the interface between the anterior limiting lamina and the anterior stromal fibrils of the human cornea.
    Mathew JH; Bergmanson JP; Doughty MJ
    Invest Ophthalmol Vis Sci; 2008 Sep; 49(9):3914-8. PubMed ID: 18765633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a corneal stroma perfusion technique and transmission electron microscopy to assess ultrastructural changes associated with exposure to slightly acidic pH 5.75 solutions.
    Doughty MJ; Bergmanson JP
    Curr Eye Res; 2008 Jan; 33(1):45-57. PubMed ID: 18214742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen fibril characteristics at the corneo-scleral boundary and rabbit corneal stromal swelling.
    Doughty MJ; Bergmanson JP
    Clin Exp Optom; 2004 Mar; 87(2):81-92. PubMed ID: 15040774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.