These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 21919368)
41. Highly Stable Lyophilized Homogeneous Bead-Based Immunoassays for On-Site Detection of Bio Warfare Agents from Complex Matrices. Mechaly A; Marx S; Levy O; Yitzhaki S; Fisher M Anal Chem; 2016 Jun; 88(12):6283-91. PubMed ID: 27253489 [TBL] [Abstract][Full Text] [Related]
42. Double-color fluorescence in situ hybridization (FISH) for the detection of Bacillus anthracis spores in environmental samples with a novel permeabilization protocol. Weerasekara ML; Ryuda N; Miyamoto H; Okumura T; Ueno D; Inoue K; Someya T J Microbiol Methods; 2013 Jun; 93(3):177-84. PubMed ID: 23523967 [TBL] [Abstract][Full Text] [Related]
43. Autonomous detection of aerosolized Bacillus anthracis and Yersinia pestis. McBride MT; Masquelier D; Hindson BJ; Makarewicz AJ; Brown S; Burris K; Metz T; Langlois RG; Tsang KW; Bryan R; Anderson DA; Venkateswaran KS; Milanovich FP; Colston BW Anal Chem; 2003 Oct; 75(20):5293-9. PubMed ID: 14710805 [TBL] [Abstract][Full Text] [Related]
44. Effect of pH on the electrophoretic mobility of spores of Bacillus anthracis and its surrogates in aqueous solutions. White CP; Popovici J; Lytle DA; Adcock NJ; Rice EW Appl Environ Microbiol; 2012 Dec; 78(23):8470-3. PubMed ID: 23001659 [TBL] [Abstract][Full Text] [Related]
45. Non-contact and non-destructive detection and identification of Bacillus anthracis inside paper envelopes. Kendler S; Aharoni R; Cohen S; Raich R; Weiss S; Levy H; Mano Z; Fishbain B; Ron I Forensic Sci Int; 2019 Aug; 301():e55-e58. PubMed ID: 31153677 [TBL] [Abstract][Full Text] [Related]
46. Raman spectroscopic detection of anthrax endospores in powder samples. Stöckel S; Meisel S; Elschner M; Rösch P; Popp J Angew Chem Int Ed Engl; 2012 May; 51(22):5339-42. PubMed ID: 22505355 [No Abstract] [Full Text] [Related]
47. Simultaneous detection of five biothreat agents in powder samples by a multiplexed suspension array. Wang J; Yang Y; Zhou L; Wang J; Jiang Y; Hu K; Sun X; Hou Y; Zhu Z; Guo Z; Ding Y; Yang R Immunopharmacol Immunotoxicol; 2009; 31(3):417-27. PubMed ID: 19555207 [TBL] [Abstract][Full Text] [Related]
48. Use of onsite technologies for rapidly assessing environmental Bacillus anthracis contamination on surfaces in buildings. Centers for Disease Control and Prevention (CDC) MMWR Morb Mortal Wkly Rep; 2001 Dec; 50(48):1087. PubMed ID: 11770505 [TBL] [Abstract][Full Text] [Related]
49. Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Pal S; Alocilja EC Biosens Bioelectron; 2009 Jan; 24(5):1437-44. PubMed ID: 18823768 [TBL] [Abstract][Full Text] [Related]
50. Standard method for deposition of dry, aerosolized, silica-coated Bacillus spores onto inanimate surfaces. Harnish D; Heimbuch BK; McDonald M; Kinney K; Dion M; Stote R; Rastogi V; Smith L; Wallace L; Lumley A; Schreuder-Gibson H; Wander JD J Appl Microbiol; 2014 Jul; 117(1):40-9. PubMed ID: 24690070 [TBL] [Abstract][Full Text] [Related]
51. From the Centers of Disease Control and Prevention. Use of onsite technologies for rapidly assessing environmental Bacillus anthracis contamination on surfaces in buildings. JAMA; 2002 Jan; 287(2):183. PubMed ID: 11799964 [No Abstract] [Full Text] [Related]
52. Comparison of noninvasive sampling sites for early detection of Bacillus anthracis spores from rhesus monkeys after aerosol exposure. Hail AS; Rossi CA; Ludwig GV; Ivins BE; Tammariello RF; Henchal EA Mil Med; 1999 Dec; 164(12):833-7. PubMed ID: 10628152 [TBL] [Abstract][Full Text] [Related]
53. [Survival of Bacillus anthracis spores in baths using modern technologic tannery processes]. Mendrycka M; Mierzejewski J Med Dosw Mikrobiol; 2003; 55(1):41-6. PubMed ID: 12908413 [TBL] [Abstract][Full Text] [Related]
54. A label-free impedimetric aptasensor for the detection of Bacillus anthracis spore simulant. Mazzaracchio V; Neagu D; Porchetta A; Marcoccio E; Pomponi A; Faggioni G; D'Amore N; Notargiacomo A; Pea M; Moscone D; Palleschi G; Lista F; Arduini F Biosens Bioelectron; 2019 Feb; 126():640-646. PubMed ID: 30522085 [TBL] [Abstract][Full Text] [Related]
55. Reagent-free and portable detection of Bacillus anthracis spores using a microfluidic incubator and smartphone microscope. Hutchison JR; Erikson RL; Sheen AM; Ozanich RM; Kelly RT Analyst; 2015 Sep; 140(18):6269-76. PubMed ID: 26266749 [TBL] [Abstract][Full Text] [Related]
56. Most-probable-number rapid viability PCR method to detect viable spores of Bacillus anthracis in swab samples. Létant SE; Kane SR; Murphy GA; Alfaro TM; Hodges LR; Rose LJ; Raber E J Microbiol Methods; 2010 May; 81(2):200-2. PubMed ID: 20193716 [TBL] [Abstract][Full Text] [Related]
57. From the Centers for Disease Control and Prevention. Interim guidelines for investigation of and response to Bacillus anthracis exposures. JAMA; 2001 Nov; 286(20):2540-1. PubMed ID: 11763848 [No Abstract] [Full Text] [Related]
58. A combined immunomagnetic separation and lateral flow method for a sensitive on-site detection of Bacillus anthracis spores--assessment in water and dairy products. Fisher M; Atiya-Nasagi Y; Simon I; Gordin M; Mechaly A; Yitzhaki S Lett Appl Microbiol; 2009 Apr; 48(4):413-8. PubMed ID: 19187500 [TBL] [Abstract][Full Text] [Related]
59. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores. Edmonds J; Lindquist HD; Sabol J; Martinez K; Shadomy S; Cymet T; Emanuel P PLoS One; 2016; 11(4):e0152225. PubMed ID: 27123934 [TBL] [Abstract][Full Text] [Related]
60. Re-aerosolization of Bacillus thuringiensis spores from concrete and turf. Bishop AH; O'Sullivan CM; Lane A; Butler Ellis MC; Sellors WJ Lett Appl Microbiol; 2017 May; 64(5):364-369. PubMed ID: 28256003 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]