These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21919460)

  • 1. Life cycle greenhouse gas emissions of current oil sands technologies: GHOST model development and illustrative application.
    Charpentier AD; Kofoworola O; Bergerson JA; MacLean HL
    Environ Sci Technol; 2011 Nov; 45(21):9393-404. PubMed ID: 21919460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle Greenhouse gas emissions of current Oil Sands Technologies: surface mining and in situ applications.
    Bergerson JA; Kofoworola O; Charpentier AD; Sleep S; Maclean HL
    Environ Sci Technol; 2012 Jul; 46(14):7865-74. PubMed ID: 22667690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model to investigate energy and greenhouse gas emissions implications of refining petroleum: impacts of crude quality and refinery configuration.
    Abella JP; Bergerson JA
    Environ Sci Technol; 2012 Dec; 46(24):13037-47. PubMed ID: 23013493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.
    Pacheco DM; Bergerson JA; Alvarez-Majmutov A; Chen J; MacLean HL
    Environ Sci Technol; 2016 Dec; 50(24):13574-13584. PubMed ID: 27993083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels.
    Cai H; Brandt AR; Yeh S; Englander JG; Han J; Elgowainy A; Wang MQ
    Environ Sci Technol; 2015 Jul; 49(13):8219-27. PubMed ID: 26054375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Land use greenhouse gas emissions from conventional oil production and oil sands.
    Yeh S; Jordaan SM; Brandt AR; Turetsky MR; Spatari S; Keith DW
    Environ Sci Technol; 2010 Nov; 44(22):8766-72. PubMed ID: 20949948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistically Enhanced Model of In Situ Oil Sands Extraction Operations: An Evaluation of Variability in Greenhouse Gas Emissions.
    Orellana A; Laurenzi IJ; MacLean HL; Bergerson JA
    Environ Sci Technol; 2018 Feb; 52(3):947-954. PubMed ID: 29232120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability and uncertainty in life cycle assessment models for greenhouse gas emissions from Canadian oil sands production.
    Brandt AR
    Environ Sci Technol; 2012 Jan; 46(2):1253-61. PubMed ID: 22191713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing.
    Middleton RS; Brandt AR
    Environ Sci Technol; 2013 Feb; 47(3):1735-44. PubMed ID: 23276202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Variability in Greenhouse Gas Intensity of Canadian Oil Sands Surface Mining and Upgrading Operations.
    Sleep S; Laurenzi IJ; Bergerson JA; MacLean HL
    Environ Sci Technol; 2018 Oct; 52(20):11941-11951. PubMed ID: 30207717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combustion emissions from refining lower quality oil: what is the global warming potential?
    Karras G
    Environ Sci Technol; 2010 Dec; 44(24):9584-9. PubMed ID: 21114339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.
    El-Houjeiri HM; Brandt AR; Duffy JE
    Environ Sci Technol; 2013 Jun; 47(11):5998-6006. PubMed ID: 23634761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.
    Burnham A; Han J; Clark CE; Wang M; Dunn JB; Palou-Rivera I
    Environ Sci Technol; 2012 Jan; 46(2):619-27. PubMed ID: 22107036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse gas emissions from biofuels' indirect land use change are uncertain but may be much greater than previously estimated.
    Plevin RJ; O'Hare M; Jones AD; Torn MS; Gibbs HK
    Environ Sci Technol; 2010 Nov; 44(21):8015-21. PubMed ID: 20942480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.
    Luo D; Hu Z; Choi DG; Thomas VM; Realff MJ; Chance RR
    Environ Sci Technol; 2010 Nov; 44(22):8670-7. PubMed ID: 20968295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greenhouse Gas Emission Evaluation of the GTL Pathway.
    Forman GS; Hahn TE; Jensen SD
    Environ Sci Technol; 2011 Oct; 45(20):9084-92. PubMed ID: 21936580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms.
    Vanotti MB; Szogi AA; Vives CA
    Waste Manag; 2008; 28(4):759-66. PubMed ID: 18060761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of greenhouse gas generation in wastewater treatment plants--model development and application.
    Bani Shahabadi M; Yerushalmi L; Haghighat F
    Chemosphere; 2010 Feb; 78(9):1085-92. PubMed ID: 20110104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embodied Energy and GHG Emissions from Material Use in Conventional and Unconventional Oil and Gas Operations.
    Brandt AR
    Environ Sci Technol; 2015 Nov; 49(21):13059-66. PubMed ID: 26421352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions.
    Nduagu EI; Gates ID
    Environ Sci Technol; 2015 Jul; 49(14):8824-32. PubMed ID: 26114481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.