These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21919464)

  • 1. Facile preparation of platelike tungsten oxide thin film electrodes with high photoelectrode activity.
    Amano F; Tian M; Wu G; Ohtani B; Chen A
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4047-52. PubMed ID: 21919464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and photoelectrochemical property of tungsten(vi) oxide films with a flake-wall structure.
    Amano F; Li D; Ohtani B
    Chem Commun (Camb); 2010 Apr; 46(16):2769-71. PubMed ID: 20369177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design.
    Chen X; Ye J; Ouyang S; Kako T; Li Z; Zou Z
    ACS Nano; 2011 Jun; 5(6):4310-8. PubMed ID: 21604767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photocatalysis and photoinduced hydrophilicity of WO3 thin films with underlying Pt nanoparticles.
    Miyauchi M
    Phys Chem Chem Phys; 2008 Nov; 10(41):6258-65. PubMed ID: 18936850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties.
    Jiao Z; Wang J; Ke L; Sun XW; Demir HV
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):229-36. PubMed ID: 21218846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for L-dopa bio-sensing applications.
    Hariharan V; Radhakrishnan S; Parthibavarman M; Dhilipkumar R; Sekar C
    Talanta; 2011 Sep; 85(4):2166-74. PubMed ID: 21872074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and multicolor electrochromic performance of a WO3/tris(2,2'-bipyridine)ruthenium(II)/polymer hybrid film.
    Yagi M; Sone K; Yamada M; Umemiya S
    Chemistry; 2005 Jan; 11(2):767-75. PubMed ID: 15549772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WO3 nanostructures facilitate electron transfer of enzyme: application to detection of H2O2 with high selectivity.
    Deng Z; Gong Y; Luo Y; Tian Y
    Biosens Bioelectron; 2009 Apr; 24(8):2465-9. PubMed ID: 19208464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistive switching behavior and multiple transmittance states in solution-processed tungsten oxide.
    Wu WT; Wu JJ; Chen JS
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2616-21. PubMed ID: 21702504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WO3 thin films for photoelectrochemical purification of water.
    Waldner G; Brüger A; Gaikwad NS; Neumann-Spallart M
    Chemosphere; 2007 Mar; 67(4):779-84. PubMed ID: 17126884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.
    Feng X; Chen Y; Qin Z; Wang M; Guo L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Efficient Photoelectrochemical Hydrogen Generation Using Zn(x)Bi2S(3+x) Sensitized Platelike WO₃ Photoelectrodes.
    Liu C; Yang Y; Li W; Li J; Li Y; Shi Q; Chen Q
    ACS Appl Mater Interfaces; 2015 May; 7(20):10763-70. PubMed ID: 25942616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaporation-Driven Deposition of WO₃ Thin Films from Organic-Additive-Free Aqueous Solutions by Low-Speed Dip Coating and Their Photoelectrochemical Properties.
    Uchiyama H; Igarashi S; Kozuka H
    Langmuir; 2016 Apr; 32(13):3116-21. PubMed ID: 27010979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photoelectrocatalytic performance of Zn-doped WO(3) photocatalysts for nitrite ions degradation under visible light.
    Cheng XF; Leng WH; Liu DP; Zhang JQ; Cao CN
    Chemosphere; 2007 Aug; 68(10):1976-84. PubMed ID: 17482660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator.
    Abe R; Higashi M; Domen K
    ChemSusChem; 2011 Feb; 4(2):228-37. PubMed ID: 21275062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment.
    Sayama K; Nomura A; Arai T; Sugita T; Abe R; Yanagida M; Oi T; Iwasaki Y; Abe Y; Sugihara H
    J Phys Chem B; 2006 Jun; 110(23):11352-60. PubMed ID: 16771406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers.
    Zhang K; Shi XJ; Kim JK; Park JH
    Phys Chem Chem Phys; 2012 Aug; 14(31):11119-24. PubMed ID: 22772604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doping Mo on Tungsten Oxide Thin Film and Photoelectrochemical Measurement.
    Yoon SH; Kim KS
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4813-4817. PubMed ID: 33691871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical Gas-Electrolyte-Solid Phase Boundary for Hydrogen Production From Water Vapor.
    Amano F; Shintani A; Mukohara H; Hwang YM; Tsurui K
    Front Chem; 2018; 6():598. PubMed ID: 30560121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB
    ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.